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ABSTRACT
Aim: Marine organisms are responding to warming by altering their distribution ranges, causing biogeographic range shifts 
and in some cases, favouring the community homogenisation. Transition zones can act as natural laboratories to explore the 
consequences of homogenisation. However, these habitats are relatively poorly studied in coastal areas. In this study, we aimed 
to investigate biotic homogenisation and changes in reef fish community composition from both a taxonomic and trait-based 
perspective.
Location: Seven islands in the South-western Atlantic transition zone.
Methods: We used a long-term survey data set of reef fish species abundances and traits of communities to calculate beta-diversity 
indices. By analysing the data, we derived temporal trends of beta-diversity values by separately comparing the North and South 
regions of the transition zone and performed pairwise comparisons to explore their dynamics when considered together.
Results: Contrary to previous expectations, we found no sign of homogenisation. The colder islands (Southern) experienced a 
decrease in taxonomic and trait richness metrics, whereas for the warmer islands (Northern), the taxonomic and trait richness 
fluctuated without any significant temporal trends.
Main Conclusions: While taxonomic composition may change over time, the trait composition is generally more conserved, 
highlighting the trait redundancy in South-western Atlantic communities and supporting the idea that these communities can 
maintain a range of ecological processes despite changes in taxonomic composition. Finally, the study revealed that despite 
non-homogenisation, the species that contribute most to variation, especially in the South, have common trait combinations 
indicating an increase in the trait redundancy of fish communities over time. We underline that local-scale conservation efforts 
may be particularly effective in preserving and protecting species and ecological functions in areas experiencing unique and fast 
changes in biodiversity.
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1   |   Introduction

Marine organisms worldwide have shown pronounced alter-
ations in their distribution ranges in response to warming 
(Lenoir et al. 2020; Pinsky, Selden, and Kitchel 2020). Species 
may respond to warming by moving either poleward, deeper 
or decreasing in abundance (Perry 2005; McLean et al.  2021). 
One well-known consequence of such climate-driven range 
shifts includes tropicalisation, caused by warm-affinity species 
expanding their distribution and increasing in proportion in 
more temperate locations (Vergés et al. 2016). In concert with 
tropicalisation, climate-driven range shifts are expected to 
lead to an overall homogenisation of communities (Pradervand 
et al. 2014; Stewart et al. 2018). The homogenisation process is 
primarily a result of the gradual replacement of native commu-
nities by range-expanding species, which increases the similar-
ity of biotas (McKinney and Lockwood 1999). In this process, 
fast-growing and generalist species increase both in terms of 
distribution and abundance, largely thanks to their broad niche 
tolerances and ability to colonise new habitats (Clavel, Julliard, 
and Devictor 2011). In contrast, more specialised species, which 
typically have particular feeding and habitat affinities, slower 
growth and lower fecundity, may be less capable to adapt or 
shift their distribution and thus render them more susceptible to 
climate-induced variations (Graham et al. 2011). Taken together, 
the decrease and replacement of specialists by more abundant 
and widespread generalist species may contribute to greater sim-
ilarity in species and trait composition, thus leading to homo-
genisation and a resulting decline in diversity (Clavel, Julliard, 
and Devictor 2011; Pool and Olden 2012; Zwiener et al. 2018). 
Furthermore, the underlying processes contributing to species 
range shifts and homogenisation can have important implica-
tions also in terms of the structure and functioning of ecosys-
tems (Beger et al. 2014; Vergés et al. 2019; Maureaud et al. 2020). 
For instance, in Australian reefs, warming led to an increase in 
tropical herbivorous fish species and the decline of temperate 
planktivorous species, which in turn modified the community 
structure and energy flux (Smith et  al.  2021). Therefore, the 
consideration of both species and traits in diversity studies is 
key to better understand the underlying processes contributing 
to community changes (including homogenisation) and their 
variability in space and time (Bellwood et  al.  2002; Swenson, 
Anglada-Cordero, and Barone  2011; Soininen et  al.  2016; 
Richardson et al. 2018).

Empirical studies have shown that regional diversity may be par-
titioned into multiple components (Cavender-Bares et al. 2009). 
One of these components encompasses beta-diversity, which de-
scribe the turnover in species composition across space and time 
(Loreau 2000; Maxwell et al. 2022). Studies using beta-diversity 
have shown signs of homogenisations in both marine and terres-
trial taxa, for example, birds, fish, marine meiofauna, mammals 
and plants (Brustolin et al. 2019; Davey et al. 2012; Hidasi-Neto 
et al. 2019; Pool and Olden 2012; Zwiener et al. 2018). However, 
the degree to which homogenisation affects both the taxonomic 
and trait structure of communities is poorly known, especially 
when accounting for species abundances (Pool and Olden 2012).

Transition zones where environmental conditions change 
markedly, even over limited geographical distances may act 
as natural laboratories allowing us to explore the effects of 

homogenisation. This is because sharp environmental gradients 
favour communities characterised by species adapted to differ-
ent conditions (Ferro and Morrone  2014). Studying transition 
zones may provide key test cases to investigate the impacts of 
global warming on regional scale community responses, as spe-
cies in these areas are close to their physiological tolerance lim-
its (Sommer et al. 2017). The combination of high biodiversity, 
natural variability and proximity to environmental thresholds 
makes transition zones particularly susceptible to biotic reor-
ganisation. Consequently, they are more likely to experience 
shifts in species distributions, composition and dominance due 
to environmental changes. As a result of climatic changes, these 
areas are expected to show an increase in taxonomic and trait 
homogenisation over time due to the most responsive organisms 
(likely common and dominant warm-affinity species) expand-
ing their range (Favoretto, Sánchez, and Aburto-Oropeza 2022) 
and increasing the frequency of general traits in the community. 
Despite their potential to provide new insights regarding com-
munity changes and responses to warming, transition zones are 
relatively poorly studied, at least in marine ecosystems (Vergés 
et al. 2016; Iknayan and Beissinger 2020).

In this study, we investigate signs of homogenisation and poten-
tial changes in community composition from both a taxonomic 
and trait perspective, using a unique, long-term survey data set 
of reef fish species abundances and traits sampled across the 
South-western Atlantic transition zone as an illustrative case 
study. More specifically, we aim to identify the patterns and 
compare long-term changes in richness and turnover among 
reef fish communities in islands from two regions exposed to 
warming, but characterised by generally warmer or colder 
water masses, as well as differences in the level of exploitation. 
To achieve this overall aim, we pursued the following research 
questions: (i) How does the overall species and trait diversity 
change over time in each region? (ii) To what extent have po-
tential changes in richness been accompanied by underlying al-
terations in composition and abundances? (iii) Have changes in 
community composition and abundances led to increased taxo-
nomic or trait homogenisation between regions over time?

2   |   Methods

2.1   |   Study Area

The study area encompasses reef fish assemblages sampled 
in seven continental islands located in the subtropical-warm 
temperate transition zone of the South-western Atlantic 
(Figure  1). Due to the sampling limitations (Figure  S1), 
the islands were grouped into the Northern warm region 
(Galé—50 ha, Arvoredo—342 ha and Deserta—16 ha) and the 
Southern temperate region (Aranhas—27 ha, Xavier—10 ha, 
Campeche—49 ha and Moleques do Sul islands—14 ha). The 
distance between islands ranges from 4 to 31 km and the over-
all study extent is 74 km. The Northern islands show generally 
higher mean temperatures, whereas the southernmost islands 
experience cooler conditions. Both areas are exposed to similar 
regional variation in temperature dynamics, which plays an im-
portant role in shaping ecological communities due to fast tem-
perature change (Beger et al. 2014). A warming trend is evident 
in terms of the mean observed sea surface temperatures (SST; 
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North mean SST: p = 0.01, r2 = 0.41; South mean SST: p = 0.01, 
r2 = 0.42) against time. Furthermore, the Northern islands are 
located inside the Arvoredo Marine Protected Area (MPA), 
while the Southern islands are located outside the MPA and are 
therefore exposed to higher human pressures, including both ar-
tisanal and recreational fishing. The rocky reefs in all localities 
are covered mainly by algal turfs, erect macroalgae and zoan-
thids (Aued et al. 2018).

2.2   |   Underwater Visual Censuses Survey Data

Reef fish species occurrences and abundance were obtained 
from 1306 underwater visual censuses (UVCs) carried out 
during summers from 2008 to 2022 (Figure S1). The sampling 
protocol consists of identifying and counting all actinopterygian 
(ray-finned) fish species observed within a belt transect of 40 m2 
(20 × 2 m). At each transect, the diver visually identified, counted 
and estimated the total length (to the nearest centimetre bin) of 
all species in the water column while unwinding a measuring 
tape. When retracting the tape on the way back, the diver fol-
lows the same protocol for smaller and cryptic species, usually 
associated with the bottom (Morais, Ferreira, and Floeter 2017). 
The UVCs were carried out at shallow depths ranging between 
1.5 and 16 m depth (95% CI, Figure S2). All UVCs data available 
in Quimbayo et al. (2023).

2.3   |   Standardisation of Sampling Effort

Sampling effort was not uniform across years and islands 
(Figure S1) and this heterogeneity can lead to biased estimates 

of diversity and composition (Chao and Jost 2012). To account 
for such differences in sampling effort, we constructed species 
accumulation curves (SACs, Figure  S3) for each island and 
year to assess the level of taxonomic completeness of sampling 
using the ‘vegan’ package in R (Oksanen et al. 2016). For each 
estimated SAC, we then fitted Michaelis–Menten functions 
(Maureaud et al. 2020) and estimated the asymptotic species 
richness based on all available samples for each year-island 
combination (Table S1). Subsequently, we estimated the num-
ber of samples needed to achieve 75% completeness of the es-
timated asymptotic species richness (i.e., here ranging from 9 
to 67 samples). Only one island-year combination had insuf-
ficient sampling to reach the required number of samples for 
the desired level of completeness and was therefore removed 
from the analysis (Table S1).

2.4   |   Life History Traits

In order to reflect the general ecology of all species recorded in 
the UVCs (N = 142), a set of 11 biological traits broadly charac-
terising their morphological, physiological or behavioural adap-
tations related to feeding, growth and survival were considered 
(Table 1). The classification and selection of traits builds on pre-
vious trait-based descriptions of marine organisms (Litchman 
and Klausmeier  2008; Litchman, Ohman, and Kiørboe  2013), 
adopted in recent studies on marine fish community structure 
and changes (Dencker et al. 2017; Pecuchet et al. 2017; Beukhof, 
Dencker, et al. 2019; Silva et al. 2023). All trait information was 
compiled through a review of published checklists, online re-
positories, local reports, books and monographs compiled by 
Quimbayo et al. (2021). To avoid multi-collinearity among traits, 

FIGURE 1    |    Map of the study area, including the Northern (1–3) and Southern (4–7) islands across the transition zone. The colour range represents 
the mean sea surface temperature (SST, °C) gradient during the austral summer. The right panel shows time series and trends in the mean, minimum 
and maximum SST for both regions.
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4 of 13 Diversity and Distributions, 2025

TABLE 1    |    Life-history traits and their definitions, as provided by Quimbayo et al. (2021). Categorical and numerical traits characterising the 
main ecological aspects of species were compiled to conduct the analysis.

Trait Definition and categories Category Levels Class

Activity Period of the day that 
species feed and breed

Categoric Day, night or both Feeding/Resource 
acquisition

Level water Position in water column Categoric Bottom (staying at the bottom all 
the time), low (live slightly above 

the bottom, occasionally rest 
on the bottom) or high (several 

metres above the bottom)

Mouth position Anatomic jaw position Categoric Superior (lower jaw protruding 
upwards), terminal (upper and lower 

jaws equal in length), subterminal 
(upper jaw protruding downwards), 
inferior (mouth in ventral position), 

tubular (enlargement of mouth 
cavity) or elongated (long snout 
due to the increase in the bones 

premaxillary, maxillary and dental)

PLD Pelagic larval duration 
measured in days

Discrete — Growth/
Reproduction

Maximum body 
size

Length of the largest 
individual of the species 
observed in the census

Numeric —

Spawning The way that species 
deposit eggs in water

Categoric Attach to objects, demersal (deposit 
directly on the substrate), live (birth 
without external larval stage), oral 
(parental care when female or male 

keep the eggs in their mouth) or pelagic

Trophic level Position in the food web 
based on diet composition 

and mean trophic 
level of food items

Numeric —

Body shape Morphological specialisation 
for swimming

Categoric Box shaped (globular as in Diodontidae), 
compressed (flattened laterally), 

depressed (flattened dorsoventrally), 
eel-like (elongated, snake-like shape 
and locomotion), elongated (long in 

relation to length) or fusiform (spindle 
shape, most hydrodynamic form)

Caudal fin 
aspect ratio

An indicative value of 
species activity calculated 
from the squared height of 
caudal fin (h) divided by 
its surface (s) area (h2/s)

Numeric — Survival/Predator 
avoidance

Group size Gregariousness behaviour Categoric Solitary, pairing, small groups 
(3–20 individuals), medium 

groups (20–50 individuals) or 
large groups (> 50 individuals)

Mobility Area of activity Categoric Sedentary, territorial, 
mobile or very mobile
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we performed a Pearson correlation test for numerical traits, a 
PCoA using Euclidean distances among species based on cate-
gorical traits and a final sensitivity test calculating trait richness 
when removing traits one by one (Figures S4–S6).

2.5   |   Species and Trait Signs of Homogenisation

Since temporal changes in diversity and composition within an 
area may result in a decreasing or increasing degree of similarity 
between areas over time, we first investigated changes in spe-
cies richness and composition in the Northern and Southern re-
gion separately. We randomly re-sampled the number of UVCs 
needed to reach 75% of the asymptotic species richness for each 
year-island combination. For each of the 99 permutations (with 
replacement), we calculated taxonomic and trait diversity met-
rics, both weighted and non-weighted by species abundances. 
The α-diversity metrics included species richness (SRic), trait-
based richness, as well as species and trait-based evenness esti-
mated through the vegan and FD packages (Oksanen et al. 2016; 
Laliberté, Legendre, and Shipley 2015). These indices were se-
lected to facilitate the detection of the appearance or disappear-
ance of species and/or traits in the transition zone. We assessed 
whether the observed patterns deviated significantly from those 
expected by chance. We built null distributions for trait diversity 
by randomising the species pool 99 times, with each random se-
lection based on 99 bootstraps of transects. The permutations 
were conducted using independent swaps of species identities 
while maintaining assemblage richness and species occurrence 
frequencies constant. The randomised occurrence matrices 
were used to calculate trait diversity based on convex hulls (i.e., 
trait richness). For each permutation, we fitted a linear model 
with year as a predictor to assess the slope of the temporal trends 
in each region. Subsequently, we compared the distribution of 
slopes based on the null model relative to the observed slopes. 
We also calculated the temporal variation of the standardised ef-
fect size (SES) of trait richness following the equation: Trait rich-
nessobserved − Trait richnessmean.null/SDnull (Dubuc et  al.  2023), 
where Trait richnessobserved is the mean value obtained from the 
SACs, Trait richnessmean.null is the mean of null trait richness 
distribution, and SDnull is the standard deviation of the null trait 
richness distribution. Positive values indicate that trait richness 
is greater than expected by chance, whereas negative values in-
dicate the opposite. To account for temporal shifts in the taxo-
nomic composition within each region, we calculated β-diversity 
using Jaccard dissimilarity index for presence/absence data and 
Bray–Curtis dissimilarity index for abundance data using the 
beta.pair function from the betapart package (Baselga, David, 
and Orme 2012). A mean value of β-diversity for each year com-
bination derived from the dissimilarity matrix in each region 
was calculated and used for visualisation. In terms of traits, 
we calculated β-diversity for presence/absence data by using 
Gower's distance, capable of accounting for both continuous and 
categorical variables (Gower 1971). Subsequently, a PCoA was 
built using the three first axes of the resulting distance matrix 
(Laliberté and Legendre 2010), as they cumulatively explained 
more than 50% of the variation in traits.

The trait β-diversity weighted by abundances was calcu-
lated using kernel density n-dimensional hypervolumes 
as implemented in the ‘BAT’ package (Cardoso, Rigal, and 

Carvalho 2015). Community trait hypervolume was constructed 
for each year-island combination with the ‘hypervolume’ pack-
age (Blonder et  al.  2022) incorporating categorical variables 
through Gower dissimilarity and keeping three orthogonal 
axes. We estimated trait β-diversity following (Mammola and 
Cardoso 2020), that is, by computing the overall differentiation 
among kernel hypervolumes.

To reflect temporal turnover throughout the time period, all 
the β-indices above were calculated for North and South sepa-
rately by comparing the start year (first year of the time series) 
to all subsequent years with increasing temporal distance. As 
an addition to the calculations above, we used the similarity 
percentage analysis (SIMPER) to identify species contribut-
ing the most to the estimated dissimilarities in composition 
between the starting and end year for each region. To better 
explore the trait composition of the identified species and de-
termine the extent to which species contributing to compo-
sitional changes are predominantly generalists or specialists, 
we calculated the trait distinctiveness with and without abun-
dances, within each region. This analysis followed the meth-
odologies of Murgier et al. (2021) and Violle et al. (2017), using 
the ‘funrar’ package to calculate the dissimilarity matrix 
(Grenié et al. 2017). Trait distances were calculated for the en-
tire community between all pairs of species independently of 
the year of occurrence. This index represents the dissimilarity 
of any one species in terms of their traits relative to all the 
other species in the community (Violle et  al.  2017). Finally, 
we investigated potential signs of homogenisation across the 
transition zone by calculating β-diversity values reflecting 
the pairwise dissimilarity in species and trait composition 
between the North and South regions. The dissimilarities 
were obtained for each year both weighted and unweighted 
by abundances. All indices were represented by the average 
values and 95% confidence intervals across the random per-
mutations and the workflow is represented by a diagram in 
Figure 2.

3   |   Results

The Northern and Southern islands showed pronounced tempo-
ral variations in species and trait richness (Figure 3). We did not 
observe clear long-term trends in the Northern region (species 
richness: p = 0.49, r2 = 0.03; trait richness: p = 0.78, r2 < 0.01). 
However, species and trait richness in the South showed a 
slight long-term decline (species richness: p = 0.02, r2 = 0.38; 
trait richness: p < 0.01, r2 = 0.47). When comparing the first and 
last years of the time series, the species richness in the Southern 
region showed a pronounced decline by 50.5%. Our results 
demonstrate that both species and trait richness are higher in 
the Northern (warmer) areas compared to the Southern (colder) 
areas. Although the trends are different when comparing re-
gions individually, the inter-annual variation between them is 
correlated and follows the same pattern (Figure S7). In terms of 
species and trait evenness, we did not observe linear trends for 
any region (species evenness—North region: p = 0.78, r2 < 0.01; 
South region: p = 0.08, r2 = 0.25; trait evenness—North region: 
p = 0.87, r2 < 0.01; South region: p = 0.14, r2 = 0.18). The null dis-
tribution for trait richness showed no marked trends in the trait 
richness for the North and South regions. This was evidenced 
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6 of 13 Diversity and Distributions, 2025

by most SES values being above zero, highlighting that the trait 
richness in the North is more diverse than expected by the null 
model accounting for species richness. Overall, there is no sig-
nificant temporal variation in SES for any region (Figures S8 

and S9). Therefore, the trends obtained from SAC permutations 
are conserved, since after randomising the species pool (and 
consequently, traits), the results are similar with the slopes 
being centred around zero for both the null and observed model.

FIGURE 2    |    Method diagram illustrating the three main steps to calculate temporal trends in fish communities in the North and South regions 
of the South-western Atlantic. The communities were grouped by region (I), and a species accumulation curve (SAC) was fitted for each year-
region combination (II). Species and trait compilation were then used to build dissimilarity matrices (III). Trait diversity was estimated through a 
dissimilarity matrix, calculating the multidimensional space (convex hull for α-diversity) and a hypervolume for β-diversity. Temporal taxonomic and 
trait α- and β-diversity for each region separated were computed using presence/absence and abundance data (IV). Homogenisation was evaluated 
comparing pairwise distance between North and South regions in each year (V).
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FIGURE 3    |    Temporal taxonomic (a) and trait (c) richness trends and taxonomic (b) and trait (d) evenness in Northern (purple) and Southern 
(green) region. Lines and shaded areas represent the mean and 95% CI for each metric, while the solid colour lines show significant linear trends 
(derived from linear regressions with year as a predictor). Dashed colour lines represent non-significant trends.
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Taxonomic temporal β-diversity had a higher turnover between 
years than trait turnover, especially for the Southern region 
(Figure  4). These differences were more pronounced for both 
metrics weighted by abundances compared to presence/ab-
sence. Although the Northern and Southern regions showed dif-
ferences in local species and trait richness (Figure 4), the mean 
(or initial) level of turnover was similar (amounting to ~0.35). 
Furthermore, we demonstrate that while the Northern area 
shows a slight positive trend (especially for presence/absence 
data: p < 0.01, r2 = 0.88), the Southern region demonstrates a 
pronounced increase in turnover over time, especially in terms 
of abundance-based taxonomic β-diversity (p < 0.01, r2 = 0.87, 
Table S2).

When looking at the compositional differences between the 
first and the last year in more detail, our results from SIMPER 
demonstrate that 20 species contribute to at least 70% of the vari-
ation in abundance in the Northern region, while only eight spe-
cies contribute to the variance in the South (Figure 5). We found 
that species contributing most to the β-diversity (dissimilarity) 
are predominately species with the lowest distinctiveness val-
ues (generalists), especially in the South (Figure 5, blue colours) 
and whose abundances are decreasing over time (Figures  S10 
and S11). The patterns obtained for distinctiveness weighted by 
abundances revealed the same patterns as for presence/absence 
data (Figure S12).

Finally, our pairwise comparison between the Northern 
and Southern region shows on average more similar trait 

composition (i.e., lower beta diversity) compared to taxonomic 
composition (Figure  6). This is especially evident if also ac-
counting for abundances, where the average taxonomic and trait 
beta-diversity across all years amount to about 0.65 (SD = 0.13) 
and 0.30 (SD = 0.05), respectively. In terms of temporal changes, 
there is moderate inter-annual variability, yet no clear linear 
trend in the different metrics (taxonomic presence/absence: 
p = 0.13; r2 = 0.18; trait abundance: p = 0.62; r2 = 0.02), with the 
notable exception of trait turnover using presence/absence data 
(p = 0.03; r2 = 0.36) and abundance-weighted taxonomic beta-
diversity, that increased markedly throughout the time period 
(p = 0.02; r2 = 0.39).

4   |   Discussion

Global warming is generally expected to cause a loss of spe-
cies in warmer, tropical areas, while colder, temperate areas 
will instead gain species from the more diverse pool of trop-
ical taxa moving poleward (Sommer et al. 2017; Poloczanska 
et al. 2016). Our results contrast this general pattern, with the 
Southern (colder) region instead experiencing a marked de-
crease in taxonomic and trait richness, while in the Northern 
(warmer) region, richness remains largely stable. Moreover, 
we found no evidence of homogenisation between the two 
regions; rather, the communities are becoming distinct over 
time as seen for both turnover and pairwise comparison pat-
terns. Although it is well known that the current biodiversity 
crisis and loss is global in scope (Bongaarts  2019), different 

FIGURE 4    |    Taxonomic and trait β-diversity turnover observed over time in North (a) and South (b) regions relative to the starting year. Lines and 
shaded areas represent the mean and 95% CIs for each metric when using presence/absence data or weighted by abundances. The solid colour lines 
show significant temporal trends (derived from linear regressions with year distance as a predictor) while dashed lines show non-significant trends.
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and rapid changes are more likely to be observed at more local 
scales (Garcia et al. 2018). Our study conforms to such find-
ings demonstrating pronounced local differences in diversity 
(turnover) trends across the South-western Atlantic transi-
tion zone, despite the general warming trend throughout the 
region.

Furthermore, we observed that while taxonomic composition 
may change over time, the trait composition is in general more 
conserved. This is particularly true in the South where the spe-
cies composition in each consecutive year became more dif-
ferent compared to the starting year, whereas the turnover in 
trait composition was less pronounced. This may imply that the 

FIGURE 5    |    Fish species contributing most to the cumulative dissimilarity (threshold value selected: 70%) between the first (2008) and last year 
(2022) in the Northern and Southern regions. The boxplots are based on values obtained from each of the 99 permutations. The colour gradient 
illustrates the respective value of species trait distinctiveness (i.e., representing the degree to which the species are generally considered as having a 
common set of traits [low distinctiveness] or a rare set of traits [high distinctiveness] in comparison to all species in each community).
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when using presence/absence data (a) or weighted by abundances (b), respectively. The solid lines show significant temporal trends (derived from 
linear regressions with year as a predictor) while dashed lines show non-significant trends.
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increasing taxonomic turnover in the South is primarily driven 
by the disappearance of species, rather than by species replace-
ment. This is supported by the observation that species richness 
in this region is declining markedly. Higher turnover is often 
more evident in local species pools which are characterised by 
generally low richness, because overall composition is more 
sensitive to the disappearance of single species compared to 
speciose communities (Legendre 2014). Thus, the lower overall 
number of species, combined with declining richness trend, can 
explain the different compositional changes in the South com-
pared to the more species-rich Northern region. Interestingly, 
the patterns are even more pronounced when accounting for 
abundances, indicating that not only changes in distribution 
and occurrences but also in terms of number of individuals is 
affecting community composition and turnover. The increased 
dissimilarity in taxonomic composition but unvarying dissimi-
larity in trait composition in the South can largely be explained 
by the low trait uniqueness of the species that contribute most 
to the cumulative change in composition from the first to the 
last year of the time series. These include some of the most fre-
quently observed families in the South-western Atlantic, includ-
ing Gobiidae, Haemulidae, Labridae, Serranidae, Lutjanidae and 
Pomacentridae (Floeter and Gasparini 2000; Bender et al. 2013). 
In terms of their traits, these species can broadly be described as 
common reef species (referred here as ‘generalists’) as they share 
combinations of traits with some or most of the regional species 
pool (i.e., mostly mobile invertebrate feeders, diurnal, territo-
rial, benthopelagic associated, small group formers and pelagic 
spawners). Although these species share common traits, they 
are generally highly abundant (Pinheiro et al. 2018) and provide 
several common functions in the reefs (Siqueira et al. 2020), in-
cluding secondary production and nutrient excretion (Brandl 
et  al.  2019). Hence, as their abundances fluctuate and decline 
over time, it may lead to variations in terms of biomass accumu-
lation and the availability of dissolved nutrients through excre-
tion (Brandl et al. 2019).

Despite the general expectation of increased homogenisation 
caused by warming, our results show no directional change 
towards increased similarity in composition between the 
Northern and Southern region over time. This contrasts previ-
ous results found for different latitudes in other marine prov-
inces (Magurran et al. 2015). Instead, the areas tend to become 
more different, especially when considering species composition 
weighted by abundances. Since the overall richness and com-
position in the North display no or only a marginal directional 
change throughout the period, the increased dissimilarity be-
tween areas is primarily caused by changes occurring in the 
South. Notably, it indicates that species previously shared be-
tween both areas (i.e., contributing to compositional similarity) 
are becoming less abundant and may even disappear locally in 
the South. However, as mentioned in the previous section, these 
declining species primarily constitute common and ‘generalist’ 
species sharing rather similar traits with the rest of the com-
munity (i.e., low distinctiveness). This in turn explains why the 
trait turnover between areas is rather consistent and unchanged 
throughout the time period.

Global warming has emerged as a main driver of species range 
shifts and community reorganisation worldwide (Pradervand 
et al. 2014; Magurran et al. 2015; Pinsky et al. 2013). Increasing 

temperatures has also been shown to impact the trait compo-
sition of marine fish communities, at both larger and regional 
scales (Frainer et al. 2017; Pecuchet et al. 2020; Beukhof, Frelat, 
et  al.  2019; McLean et  al.  2021), including the South-western 
Atlantic transition zone (Silva et al. 2023). Consequently, warm-
ing may potentially explain some of the observed changes in 
diversity and composition also in our study. Notably, the cor-
related inter-annual variability in species richness in both re-
gions (Figure S7) suggests the presence of a similar underlying 
driver acting across regions. However, if responding similarly to 
warming, both regions would also show corresponding trends 
in diversity; yet only the Southern region shows marked trends 
in both α- and β-diversity. Hence, it is likely that the reef fish 
communities are responding differently, or to other aspects of 
temperature variations, beyond simply the increase in mean 
SST. For instance, there is evidence suggesting that the South-
western Atlantic oceanic circulation is not only warming but 
also intensifying in the past decade (Franco et al. 2020; Sánchez 
et al. 2015) and that the thermal tolerance of fish in this region 
is being influenced by temperature (Silva et  al.  2023). As ob-
served in the study of Perez and Sant'Ana (2022), Brazil's cur-
rent dynamics intensification is affecting species composition 
and biomass of warm- and cold-affinity species. In our study, 
we found a higher degree of temperature seasonality, especially 
in the South (Figure S13). It is plausible that the increasing dif-
ference between the minimum and maximum SST in the South 
may serve to constrain not only cold-adapted species limited by 
the warmer summers but also more warm-affinity species (from 
the North) limited by the consistently cooler winters. Whether 
such environmental filtering may explain the observed changes 
in richness and composition is unclear and merit further re-
search to better understand the underlying mechanisms and re-
sponses of reef fish communities to climate change. Therefore, 
the trends observed in this manuscript offer valuable insights for 
future studies exploring the relationship between these trends 
and temperature, a factor well known to significantly impact 
the physiology, behaviour and population dynamics of species 
(Rijnsdorp et al. 2009).

It is also known that climate change potentially acts in syn-
ergy with other stressors, including human disturbance and 
overexploitation (Jackson  2008; Figueroa-Pico, Tortosa, and 
Carpio 2021). More specifically, fishing activity has been shown 
to modify community structure (Froese and Kesner-Reyes 2002; 
Young, Foale, and Bellwood 2014), thereby increasing the sensi-
tivity of fish communities to climate variability (Jackson 2008). 
Interestingly, the region demonstrating temporal turnover in 
species composition corresponds to the Southernmost islands 
that are located outside an MPA and therefore exposed to fishing. 
Since the turnover is primarily evident if accounting for changes 
in abundances fishing may contribute to some of the observed 
changes in the overall β-diversity. However, among all the spe-
cies targeted by the local fishery, only one (Epinephelus margin-
atus) is experiencing a decline in abundance (Figure S10). This 
indicates that the beta-diversity patterns observed in this study 
could potentially be influenced indirectly by fishing activities. 
Unfortunately, we lack accurate data on fishing activity in the 
area and its changes in space and time, making it challenging 
to establish and quantify effects of fishing on reef fish diversity 
and community composition. Hence, we emphasise the impor-
tance of having access to such information, as well as data on 
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enforcement and performance of MPAs. Additionally, we ac-
knowledge that the species are likely being impacted by several 
other factors, including the influence of temperature, ocean cir-
culation and their specific thermal tolerances. Hence, further 
research is needed to understand the potential cumulative im-
pacts of fishing and climate change acting on the diversity and 
composition of reef fish communities in the area and beyond.

Our findings highlight the importance of considering multiple 
metrics of taxonomic and trait α- and β-diversity, while account-
ing for both presence–absence and abundances, to better under-
stand changes in diversity and its potential impacts on structure 
and functioning of systems. Although single metrics of α-diversity 
(typically species richness) can reveal spatial and temporal 
changes, it cannot alone capture important changes in the un-
derlying composition and evenness of assemblages (Richardson 
et al. 2018). This limits our understanding of the potential impli-
cations for ecosystem functioning. Our study comparing multiple 
aspects of diversity of reef fish communities demonstrates that 
while pronounced differences exists in terms of species richness 
and composition, trait turnover is considerably weaker, or even 
unchanged within and between areas. This highlights a high 
degree of trait redundancy in these communities and supports 
the idea that the South-western Atlantic communities are able 
to maintain a range of ecological processes due to few functional 
entities (i.e., unique combinations of traits) performing similar 
functions (Mouillot et al. 2014). A higher trait redundancy may in 
turn increase the resilience of communities to change (Flensborg 
et al. 2023). However, rare and specialist species are likely to sup-
port vulnerable functions in reef ecosystems due to their unique 
functional roles (Mouillot et al. 2013; McLean et al. 2019). Hence, 
the replacement of specialists by generalist species resulting from 
homogenisation could result in ecological functions not perfectly 
performed as expected by more specialist species (Quimbayo 
et al. 2018). Therefore, studies exploring links between diversity, 
composition and ecosystem functions are key to a more holistic 
view of the effects of community changes on ecosystems (Duffy 
et al. 2016; Maureaud et al. 2020). In that regard, predictive mod-
els, for instance based on joint-species distribution models or 
trait-based food-web models (Maureaud et al. 2020; Ovaskainen 
et al. 2017; Jetz et al. 2019; van Denderen et al. 2021), could help 
to better characterise past, present and future changes in reef fish 
community composition and its potential impacts on ecosystem 
structure and functioning.

In summary, we observed a loss of taxonomic and trait richness 
in the Southern (colder) islands of the South-western Atlantic 
transition zone, while no directional trend was observed in the 
Northern (warmer) region. Furthermore, we found no composi-
tional changes in terms of traits, but demonstrate pronounced 
turnover in taxonomic composition in the South, at least if ac-
counting for species abundances. Taken together, our study 
shows no evidence of a directional change towards increased 
homogenisation across the transition zone, despite the general 
warming trend. On the contrary, our study shows increased dif-
ferences in taxonomic composition, but high trait redundancy 
over time throughout the area. We emphasise the significance 
of the preservation of the trait structure of communities, along-
side species composition, to predict potential responses to dis-
turbances. (McLean et al. 2019). Other β-diversity components 
(e.g., nestedness and turnover) are worth exploring in follow-up 

research to better understand the taxonomic and trait variation 
among communities. Finally, future studies in transition zones 
could consider the specific responses of communities exposed 
to climate change and other drivers of biodiversity loss, such as 
habitat diversity, to compare with the findings obtained here.
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