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A B S T R A C T   

Southwestern Atlantic reefs (Brazilian Province) occur along a broad latitudinal range (~5◦N-27◦S) and under 
varied environmental conditions. We combined large-scale benthic cover and environmental data into uni- and 
multivariate regression tree analyses to identify unique shallow (<30 m) benthic reef communities and their 
environmental drivers along the Brazilian Province. Turbidity was the leading environmental driver of benthic 
reef communities, with the occurrence of two main groups: clear-water (dominated by fleshy macroalgae) and 
turbid (dominated by turf algae). Seven out of 14 scleractinian coral species were more abundant in the turbid 
group, thus corroborating the photophobic nature of some Brazilian corals. The most abundant scleractinian in 
Brazil (Montastraea cavernosa), largely dominated (71–93% of total coral cover) both, the shallow turbid and 
deeper clear-water reefs. Because these habitat types are widely recognized as potential climate refuges, local 
threats (e.g. pollution, overfishing) should be averted.   

1. Introduction 

Benthic reef communities are highly diverse and shaped by a set of 
biotic interactions and environmental conditions. At small spatial scales 
(tens of meters to a few kilometers) biotic interactions, disturbance re-
gimes and variables such as water motion and bottom complexity, 
determine the cover and composition of benthic communities (Longo 
et al., 2015; Williams et al., 2015). In contrast, over larger spatial scales 
(tens to hundreds of kilometers) physical/climatic limits imposed by 
depth and temperature regimes prevail (Gove et al., 2015; Williams 
et al., 2015). Variations in background (historical) physical conditions 
are more pronounced over broad depth, cross-shelf and latitudinal 
gradients (Wismer et al., 2009; Matheus et al., 2019), and thus lead to 
adaptive responses of organisms and differentiation of benthic com-
munities at geographical scales (Aued et al., 2018; Williams et al., 
2015). Most studies testing the effects of environmental drivers have 

focused on coral communities – and their species richness - over small 
spatial scales, with only a few multi-taxa broad spatial scale studies 
based on abundance data available to date (e.g. Jouffray et al., 2015; 
Williams et al., 2015). 

Because depth is often negatively correlated with temperature and 
light irradiance, it is generally identified as the most influential variable 
affecting benthic reef communities (Francini-Filho et al., 2013; Williams 
et al., 2013). Differences in light availability are more important for 
photosynthetic organisms, particularly corals and algae, which gener-
ally dominate in shallow well-lit habitats (Vermeij and Bak 2002). 
Inshore reefs are influenced by nutrients and sediment input from land, 
while deeper reefs closer to the shelf break are usually affected by cold 
and nutrient-rich waters from upwelling (Andrews and Gentien 1982; 
Rovira et al., 2019). Such influences may explain, for example, the 
dominance of sediment-resistant coral species on nearshore reefs (Loiola 
et al., 2019; Morgan et al., 2016), as well as increased sponge abundance 
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(Lesser 2006; Rovira et al., 2019) and the occurrence of unique benthic 
communities (Matheus et al., 2019) in deeper reefs closer to the shelf 
break. 

Increased turbidity, as often found in coastal reefs, may decrease the 
availability of photosynthetically active radiation and bury reef corals, 
thus compromising coral recruitment, growth and reproductive output 
(Rogers 1990; Browne et al., 2014; Junjie et al., 2014). However, some 
coral taxa can cope with and even thrive under naturally high turbidity 
levels through adaptations such as a massive colony morphology and 
large polyps (Logan 1988; Loiola et al., 2013), efficient sediment 
removal (Lasker 1980), enhanced heterotrophy (Anthony 2006; Mies 
et al., 2018) and the preferential association with different phylotypes of 
symbiodiniaceans (Cooper et al., 2011; Rowan and Knowlton 1995). In 
fact, rich and extensive coral communities under natural high turbidity 
regimes were recently discovered worldwide (Zweifler et al., 2021) and 
there is geological evidence for extensive reef development on turbid 
waters over millennial time scales (Smithers and Larcombe 2003; 
Palmer et al., 2010; Perry and Smithers 2011). 

Southwestern Atlantic reefs are within the Brazilian Province (Briggs 
1974; Castro and Pires 2001; Pinheiro et al., 2018). Brazilian corals are 
adapted to high turbidity levels caused by the influx and resuspension of 
terrigenous sediments, a condition particularly prevalent on shallow 
inshore reefs influenced by the discharge of several large rivers along the 
coast (Leão et al., 2003; Mies et al., 2020). Turbidity is believed to have 
shaped the composition and evolution of coral communities in the 
Brazilian Province (Leão et al., 2003) and may function as a buffer 
against coral bleaching in the face of global warming by attenuating 
light intensity (Mies et al., 2020). Brazilian reefs host a depauperate 
coral fauna in comparison with the Caribbean and Indo-Pacific regions, 
but with a relatively high endemism rate for scleractinians (about 30%) 
(Leão et al., 2003). The absence of branching scleractinians (Coni et al., 
2013; Luza et al., 2022) and the dominance of algae and zoanthids 
(Reverter et al., 2021; Aued et al., 2018) are other peculiar features of 
Brazilian reefs. In addition, reefs are mostly continental, with only four 
oceanic sites (Rocas Atoll and the archipelagos of Fernando de Noronha, 
Trindade/Martim Vaz and St. Peter and St. Paul’s) that are impoverished 
outposts of the continental reef biodiversity (Leão et al., 2003; Aued 
et al., 2018; Pinheiro et al., 2018). 

Brazilian reefs are spread along a broad latitudinal range (~5◦N - 
27◦S) and subjected to varied environmental conditions (Spalding et al., 
2007), thus providing a unique opportunity to evaluate possible adap-
tive responses of benthic reef communities to background environ-
mental conditions. Although several local-scale studies about benthic 
reef communities were published in the last decade (e.g. Villaça and 
Pitombo, 1997, Oigman-Pszczol et al., 2004; Ghilardi et al., 2008; 
Francini-Filho et al., 2013; Magalhães et al., 2015), as well as a recent 
broad-scale assessment for the region (Aued et al., 2018), a compre-
hensive study evaluating the environmental drivers of benthic reef 
communities at the province scale is still missing. 

We aimed to assess how environmental variables shape shallow 
(<30 m depth) benthic reef communities along the Brazilian Province. 
We used multivariate and univariate machine learning techniques 
(regression trees) to identify possible non-linear relationships and 
thresholds of benthic communities along environmental gradients. We 
hypothesize that turbidity is the most important variable affecting not 
only coral assemblages, but the structure of the entire benthic reef 
communities. Our integrative analyses were performed using the most 
comprehensive dataset for Brazilian benthic reef communities available 
to date and large-scale climatological data obtained through remote 
sensing. 

2. Material and methods 

2.1. Study system 

Different types of reefs were sampled along the Brazilian coast 

between 2008 and 2018. Temporal data for Brazilian reefs indicate that 
major spatial patterns in benthic community structure are consistent 
through time (e.g. Francini-Filho et al., 2013; Zamoner et al., 2021). The 
north/northeastern and central coasts are dominated by sandstone 
(beach rock) and biogenic reefs, while rocky reefs prevail from the 
central coast (Espírito Santo State, 20◦S) to southern Brazil (Santa Cat-
arina State, 27◦S). Three out of the four Brazilian oceanic sites (the 
archipelagos of Fernando de Noronha, Trindade/Martim Vaz and St. 
Peter and St. Paul’s) comprise rocky reefs with sparse coral formations, 
while the Rocas Atoll is a biogenic reef mostly built by calcareous algae 
(Gherardi and Bosence 2001). Shelf width varies from ~10 to 300 km 
along the coast and from ~0.5 to 5 km in oceanic islands. In the 
southeastern coast, reefs are seasonally subjected to cold (~15 ◦C) and 
enriched waters from upwelling and the South Atlantic Central Waters 
(SACW) (Ekau and Knoppers 1999; Valentin 2001; Castro 2014). Up-
welling is also a common feature in the oceanic St. Peter and St. Paul’s 
Archipelago (SPSPA) (Moreira et al., 2015). 

We used primary data for the four Brazilian oceanic islands and the 
coast (139 sites distributed between 0◦55′N - 27◦00′S) (see Fig. 2). Sites 
were composed by a combination of location and depth strata 
(Table S1). Part of this database is already available through published 
work focused on specific locations (Pereira-Filho et al., 2011; Franci-
ni-Filho et al., 2013; Longo et al., 2015; Magalhães et al., 2015; Aued 
et al., 2018; Matheus et al., 2019). Benthic cover was estimated using 
two different methodologies based on photo-quadrats (cf. Francini-Filho 
et al., 2013; Aued et al., 2018). In total, 1547 samples (photo-quadrats) 
were obtained between 0 and 30 m depth. Unpublished data and those 
provided by Pereira-Filho et al. (2011), Francini-Filho et al. (2013), 
Magalhães et al. (2015) and Matheus et al. (2019) were obtained using 
66 × 75 cm quadrats, with 5–33 haphazardly allocated replicates ob-
tained per site (i.e. total area surveyed of 2.5–16.3 m2). Data from Aued 
et al. (2018) were obtained with 25 × 25 cm quadrats and with 40–150 
haphazardly distributed replicates obtained per site (i.e. total area sur-
veyed of 20–75 m2). Images obtained with the 66 × 75 cm quadrats were 
analyzed through the identification of organisms immediately under 
300 randomly assigned points using the Coral Point Count with Excel 
extensions software (CPCe; Kohler and Gill 2006), while images from 25 
× 25 cm quadrats were analyzed by overlaying 50 random points per 
image using the photoQuad software (Trygonis and Sini 2012). The 
differences in photos’ size and the number of points used for organisms’ 
identification should have a minimal effect on the results obtained, as 
we considered conspicuous groups using a gross taxonomic resolution. 
In addition, our sampling size (number of photos and points) is relatively 
high in comparison to most previous work (Dumas et al., 2009; Molloy 
et al., 2013; Bryant et al., 2017). Finally, auto similarity curves for 
relative cover data indicated that sample size was sufficient for all sites. 
The curves were calculated by iteratively estimating average similarity 
values (Bray-Curtis) between randomly selected samples (cf. Schneck 
and Melo 2010) and sufficient sample size (i.e. when resemblance rea-
ches an asymptote) were attained with 4–5 samples for both methods. 
Species level identification was possible for scleractinians only. To avoid 
potential bias related to differences in taxonomic resolution among 
benthic groups, organisms were grouped for further analyses as follows: 
ascidians, bryozoans, crustose calcareous algae (CCA), cyanobacterial 
mats, fire-corals, fleshy macroalgae, octocorals, Palythoa spp., other 
zoanthids, scleractinian corals, sponges and turf algae (i.e. < 2 cm 
multi-specific filamentous algae). The abiotic categories “rock” and 
“sand” were also considered. The composition and relative abundance of 
the different coral species were still considered for comparisons among 
the seven different communities delimited by our regression tree (see 
below). The full dataset is available at https://zenodo.org (under DOI 
10.5281/zenodo.7299381. 

2.2. Environmental variables 

Environmental data were obtained from the Moderate Resolution 
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Imaging Spectroradiometer (MODIS Aqua) (available at http://oceandata. 
sci.gsfc.nasa.gov) with 4 km2 resolution. Global means for each site were 
calculated based on annual means for 2002–2017. Using means from 
time-series data instead of temporal snapshots is a more comprehensive 
approach, as benthic communities may be shaped by long-term patterns 
in environmental conditions (Mumby et al., 2004; Gove et al., 2013). 
The variables selected are widely known to affect benthic reef commu-
nities’ structure (Couce et al., 2012; Gove et al., 2013) and include: 
mean sea surface temperature, chlorophyll concentration (CLO), par-
ticulate organic carbon (POC), the diffuse attenuation coefficient 
(Kd490, a proxy for turbidity; Wang et al., 2009) and photosynthetically 
active radiation (PAR, at 400 and 700 nm). Additional data (annual 
means for 2002–2009) for salinity and for nitrate and phosphate con-
centrations were obtained from Bio-Oracle (Tyberghein et al., 2012) 
with a 9 km2 resolution. Depth was measured in situ and distances from 
the sampling sites to the coast and to the shelf break were estimated 
using digital nautical charts in QGis (QGIS Development Team, 2020). 
Latitude was also added to the list of explanatory variables. 

2.3. Statistical analyses 

We used a Multivariate Regression Tree (MRT) based on average 
environmental and benthic cover values for each site to delimit unique 
benthic communities and to identify thresholds in environmental pa-
rameters responsible for their differentiation. The MRT is a constrained 
clustering algorithm that repeatedly splits samples into groups with the 
aim of finding the combination leading to the most homogeneous 
within-group (and the most heterogeneous between-group) variation 
possible. Homogeneity is measured as the sum of squares about the 
multivariate mean of each tree node. There are no assumptions on the 
relationship between variables and the best solution (i.e. the one with 
the highest predictive accuracy) is obtained through cross-validation 
(De’ath 2002). To minimize differences in abundance among rare and 
dominant benthic groups, community data were converted to arcsine 
square root. We have compared the MRT solution with the result from an 
unconstrained ordination (Principal Component Analysis, PCA) to esti-
mate the magnitude of unexplained variation due to the possible 
absence of important explanatory variables not included in the MRT 
(De’ath 2002). 

Univariate regression trees (Boosted Regression Trees, BRT) were 
used to evaluate the relative influence of different environmental vari-
ables on specific benthic groups following the procedures of Elith et al. 
(2008). Boosted Regression Tree is a method that applies machine 
learning techniques (boosting) to select the subset of variables with the 
strongest predictive capacity through recursive binary splits. Iterative 
training is performed through the combination of three parameters: i) 
bag-fraction, ii) learning rate and iii) tree complexity. The bag-fraction 
is the proportion of data selected at random at each step; learning rate 
indicates the contribution of each additional tree, and tree complexity 
measures the number of splits (nodes) of each tree. All BRT models were 
built by checking all possible combinations of values for bag-fraction 
(0.5 and 0.75), learning rate (0.0001, 0.0005, 0.001, 0.005, 0.01 and 
0.05) and tree complexity (1–5) and run with untransformed data based 
on Gaussian distribution of the dependent variable. Multicollinearity 
among predictors was verified using the Variance Inflation Factor (VIF), 
with a value of five set as the cut off (ter Braak and Smilauer, 2002). As a 
result, the following variables were removed: chlorophyll a concentra-
tion, distance to the shelf break (100 m isobath), latitude, particulate 
organic carbon concentration (POC), photosynthetically available radi-
ation (PAR) and phosphate concentration. The correlation matrix for the 
variables retained for the analyses is given in Fig. S1. 

Unpaired student’s t tests calculated using log10(x+1) transformed 
data were used to compare abundance of each organism/category be-
tween the two main groups of communities identified by the MRT: 
“turbid” and “clear-water” (see below). To avoid bias in interpretation of 
results from multiple pairwise comparisons (Nakagawa 2004) we 

calculated effect sizes with threshold values set at d ≤ 0.2 (small), 
0.2–0.8 (medium) and >0.8 (large) (Cohen 1992). 

All analyses were carried out in R (version 3.5.1) (R Core Team 
2021). 

3. Results 

Brazilian benthic reef communities are largely dominated by turf 
algae (mean global cover = 44.5%) followed by fleshy macroalgae 
(17.3%), CCA (8.5%), scleractinians (7.5%), Palythoa spp. (5%), sponges 
(3.1%), and cyanobacterial mats (1.6%). The remaining organisms 
accounted for <1% of the total cover. The most abundant abiotic 
component was sand, which represented 7.4% of the total coverage. 

The best MRT model delimited seven unique benthic reef commu-
nities within the Brazilian Province and explained 42% of the data 
(cross-validated relative error = 0.7). The first two axes of the PCA 
explained 88.7% of the data variability, suggesting additional explana-
tion could be obtained in the MRT by adding other (unknown) explan-
atory variables. The first and most pronounced split of the tree (21.4% of 
the data variation) discriminated two groups, one with clear waters 
(<0.066 Kd490.m− 1) and dominated by fleshy macroalgae (hereafter 
called “clear-water” group) and another with turbid waters (≥0.066 
Kd490.m− 1) and dominated by turf algae (hereafter called “turbid” 
group). As expected, oceanic islands harbored clear-water communities 
only, but some clear-water communities were also recorded in the 
continental reefs of the north (Parcel de Manuel Luís) and northeastern 
coasts (Paraíba and Rio Grande do Norte states) (Figs. 1 and 2). 

The clear-water group was further subdivided into three distinct 
communities that were delimited according to depth and nitrate con-
centration. Two deep (≥12.5 m) clear-water communities were identi-
fied, one with higher nitrate concentrations (≥0.024 μM) and dominated 
by sponges, recorded at Fernando de Noronha and SPSPA (community 
one in Fig. 1), and another with lower nitrate (<0.024 μM) and domi-
nated by sand, recorded at the oceanic islands of Trindade and Martim 
Vaz and the coastal reefs of the Paraíba state (community two). Both of 
these deep communities showed relatively high abundances of CCA and 
a striking dominance of the scleractinian M. cavernosa (71–92% of the 
total coral cover). The remaining clear-water community was relatively 
shallow (<12.5 m) and was recorded at Fernando de Noronha, Parcel de 
Manuel Luís, Rio Grande do Norte states, Rocas Atoll, SPSPA and Trin-
dade (community three). It was characterized by an increase in turf 
algae cover and by the dominance of the scleractinian Siderastrea spp., 
with this species attaining 93.1% of the total coral cover (Figs. 1 and 2). 

The turbid group was composed by four distinct communities. The 
first major split separated the inshore (<8.1 km; dominated by turf algae 
and sand) and offshore (≥8.1 km; dominated by CCA) turbid commu-
nities. Two inshore turbid communities were found, one with mean 
temperatures <27.8 ◦C and with the highest turf algae cover among all 
studied communities (community four) and another with temperatures 
≥27.8 ◦C, dominated by sand and with relatively high macroalgae and 
cyanobacterial cover (community five). Community four was the most 
prevalent one in the Brazilian coast, occurring from the northeast to the 
south, while community five was restricted to the northeast coast 
(Bahia, Paraíba and Rio Grande do Norte states). Two offshore turbid 
communities were recorded and discriminated according to nitrate 
levels, with a threshold at 0.013 μM. The community with lower nitrate 
was restricted to the Abrolhos Bank (community six). It showed rela-
tively high cover of CCA and the highest covers of Palythoa spp and 
scleractinians, particularly M. cavernosa and the Brazilian endemic coral 
Mussismilia braziliensis, among all studied communities. Finally, the 
turbid assemblage with higher nitrate concentration (community seven) 
was recorded in the northeast (Paraíba state), central (Espírito Santo 
state) and southeast coasts (Laje de Santos Island and Alcatraz Archi-
pelago, off São Paulo state). It showed relatively high covers of turf and 
fleshy macroalgae, as well as high abundances of the reef corals Mus-
sismilia hartti (particularly at Espírito Santo state), and Madracis decactis 
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and Mussismilia hispida (particularly at Espírito Santo and São Paulo 
states; Figs. 1 and 2). 

The univariate BRT models corroborated the major patterns from the 
MRT. Turbidity was the most important variable affecting the two most 
abundant benthic organisms within the Brazilian Province: fleshy and 
turf algae. These benthic groups exhibited opposite patterns, with fleshy 
macroalgae cover steeply declining and turf algae cover increasing with 
turbidity values > 0.05–0.07 Kd490.m− 1. Turf algae were also particu-
larly abundant at depths <15 m. Crustose calcareous algae abundance 
was higher on deeper reefs (10–25 m) with low nitrate concentrations 

(<0.01 μM). Scleractinians were more prevalent in depths >20 m and 
under relatively high salinity (>37), temperature (>26 ◦C) and turbidity 
levels (>0.18 Kd490.m− 1). Sponge cover sharply increased with depth 
and decreased with temperatures >24 ◦C. Cover of Palythoa spp. was 
highest on reefs shallower than 10 m. Zoanthids other than Palythoa ssp 
(mostly Zoanthus spp. and Protopalythoa sp.). were most abundant on 
reefs very close to the coast (<0.02 km) and with salinity >37. Fire- 
corals (Millepora spp.) were more abundant in relatively clear (<0.04 
Kd490.m− 1) and low salinity (<36) waters. Finally, octocoral cover was 
highest in reefs with temperatures ranging 23–24 ◦C and with turbidity 

Fig. 1. Multivariate Regression Tree (MRT) for benthic reef communities of the Brazilian Province. Environmental drivers for each split are given in the upper 
portion, while organisms responsible for the split and the relative contribution of the split to total model variation explained (in parenthesis) are given in the lower 
portion. Triangles denote the turbid group and circles denote the clear-water ones. Numbers from one to seven denote the individual communities. 
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>0.15 Kd490.m− 1 (Fig. 3, Table S2). 
Seven out of the 14 scleractinian coral species were more abundant 

on the turbid group. Octocorals, Palythoa spp., scleractinians as a group 
and turf algae were also more abundant on turbid reefs, while ascidians, 
fleshy macroalgae and sponges showed higher abundances in the clear- 
water group (Table 1). All effect sizes for significant differences were in 
the medium range (0.36–0.8), except for the large effect sizes recorded 
for turf algae (1.58), flesh macroalgae (1.49) and M. hispida (− 0.83). 

4. Discussion 

Sample clustering into the two main groups of benthic reef com-
munities identified within the Brazilian Province (clear-water and 
turbid) occurred independently from latitudinal gradients in 

temperature and productivity, and rather indicated abrupt changes in 
communities in response to local conditions that affect turbidity (e.g. 
direct input from rivers along the coast). These relationships illustrate 
the adaptive response of dominant benthic groups, particularly turf and 
fleshy macroalgae, to local environmental conditions that end up 
structuring the entire benthic community. 

The high prevalence of turf algae on turbid Brazilian coastal reefs 
may be explained by a combination of their high tolerance to stress (e.g. 
low light levels) and the indirect benefits derived from high turbidity (i. 
e. lower grazing pressure and higher nutrient availability). Turf algae 
are amongst the most abundant benthic organisms on coral reefs 
(Goatley and Bellwood 2011) and are fast-growing early-stage colo-
nizers that tolerate stress (Hay 1981, Tebbett and Bellwood, 2019). 
Their ability to efficiently incorporate sediments from the water column 

Fig. 2. Spatial distribution of the seven typical communities delimited for the Brazilian Province according to the Multivariate Regression Tree. Triangles denote 
turbid communities and circles denote clear-water ones. Color codes for sampling stations as in Fig. 1. A – St. Peter and St. Paul’s Archipelago, B – Rocas Atoll, C – 
Fernando de Noronha, D – NE Brazilian coast (Paraíba and Rio Grande do Norte States), E – Trindade Island, F -Martim Vaz island, G - Itacolomis Reefs and H - 
Abrolhos Reefs. 
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Fig. 3. Partial dependence plots obtained with Boosted Regression Trees (BRT) showing the relative influence of environmental variables on the abundance (% 
coverage) of different benthic groups. Y axes are centered to have zero mean over the data distribution. 
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(Goatley et al., 2016; Gordon et al., 2016) leads to a lower grazing 
pressure (Purcell 2000; Bonaldo and Bellwood 2011) and enhanced 
growth due to the absorption of sediment-associated nutrients (Entesch 
et al., 1983; Purcell 2000). An experimental study conducted on coastal 
Brazilian subtropical reefs detected no influence of fish herbivory on the 
dynamics of algal assemblages (Cordeiro et al., 2020), but territorial 
damselfish that are abundant throughout the Brazilian coast can keep 
algal turfs at early succession stages and enhance algae diversity and 
biomass (Ferreira et al. l998). Some fleshy macroalgae, on the other 
hand, may be negatively impacted by increased sediment loads, mainly 
through reduced recruitment, growth and survival due to reduced 
photosynthetically active radiation penetrating the water (Umar et al., 
1998; Eriksson and Johansson 2005; Tebbett and Bellwood 2019). 
Goatley et al. (2016) have suggested that sediment-laden algal turfs may 

impede succession and the development of fleshy 
macroalgae-dominated states. In addition, turbidity is the primary 
driver of macroalgae loss and turf algae proliferation worldwide (Con-
nell 2005; Tait et al., 2014). Thus, the high natural turbidity along the 
Brazilian coast may have “trapped” most reefs in a turf-dominated state, 
while at most clear-water sites, the low turbidity may have favored the 
development of late successional stages characterized by high fleshy 
macroalgae cover. 

The two shallow and the one mid-depth clear-water communities 
recorded here showed a sharp increase in abundance and striking 
dominance of Siderastrea spp. corals (up to 97% of the total coral cover). 
Species within this genus are highly resistant to stress, such as 
temperature-induced bleaching, fluctuations in salinity, dissection and 
burial by sediments (Lirman et al., 2002; Lirman and Manzello 2009), 
with some of these conditions prevailing on the shallow reefs of Bra-
zilian oceanic islands (Longo et al., 2020; Gaspar et al., 2021). The 
ecological importance of these Siderastrea dominated habitats is yet to 
be determined (see discussion on Montastraea reefs below). The two 
shallow (<4.5 m) clear-water communities dominated Rocas Atoll and 
were also present at two sites in the Fernando de Noronha Archipelago. 
They showed remarkably high cover of algal turfs, with similar values to 
those of some coastal turbid communities (~70%). Variations in turf 
algae species composition, and differences in the species’ ability to 
colonize and thrive under different environmental conditions (Longo 
et al., 2015), may explain the dominance of turf algae in both, the 
shallowest Brazilian clear-water oceanic reefs and turbid coastal reefs (i. 
e. these communities may be in fact different). For example, Magalhães 
et al. (2015) showed that the composition of turf algae communities 
differed along the depth gradient of the SPSPA, with 26 species occur-
ring in the shallow well-lit zone and only a subset (eight species) in the 
mesophotic zone. In Rocas Atoll, the composition of algal turfs varies 
between pools that remain connected with the outer reef during low 
tide, which are predominantly composed of articulated coralline algae, 
and pools that are isolated in low tide, where algal turfs are mostly 
filamentous (Longo et al., 2015). Unfortunately, there is no compre-
hensive data available on turf algae species composition for other Bra-
zilian oceanic and coastal reefs. Future analyses considering a greater 
taxonomic resolution for algae and other benthic groups may plausibly 
lead to the identification of a higher number of benthic reef communities 
within the Brazilian Province. 

The deeper clear-water community (14–30 m) showed high abun-
dances of sponges and reef-building organisms (CCA and corals). 
Increased sponge abundance with depth was expected, as their main 
food item (picoplankton) also increases with depth (Lesser and Slatery 
2013). This pattern led to the proposal of the “sponges increase with 
depth hypothesis”, which has been supported by several studies in the 
Caribbean (e.g. Lesser and Slatery 2013; 2018). Further investigations 
are needed to clarify the role of sponges on energy fluxes on deeper 
euphotic reefs in Brazil through the “sponge loop” (De Goeij et al., 2013; 
Silveira et al., 2015). Increased CCA abundance with depth was previ-
ously recorded (e.g. Figueiredo and Steneck, 2002; Matheus et al., 
2019). Here, this pattern was accompanied by a decrease in abundance 
of the fast-growing benthic organisms Palythoa spp. and turf algae (see 
Fig. 3), thus corroborating previous studies suggesting spatial competi-
tion plays important roles in dominance of CCA across depth gradients 
(Figueiredo and Steneck, 2002; Francini-Filho et al., 2013). 

We recorded a remarkable dominance of M. cavernosa on deeper 
clear-water reefs, where this species comprised up to 93% of the total 
coral cover. Increased coverage of M. cavernosa with depth has been 
previously recorded for the Caribbean (Lesser et al., 2010) and this 
species is an important component of mesophotic reefs of the Western 
Atlantic (Lesser et al., 2010; Francini-Filho et al., 2019). This scler-
actinian exhibits a multitude of strategies to cope with low light levels at 
greater depth, such as increased concentrations of photosynthetic pig-
ments, enhanced heterotrophy under enriched cold-water conditions 
and morphological adaptations to optimize the surface exposed to light 

Table 1 
Comparison of abundance (cover) of different benthic organisms between the 
“clear-water” and “turbid” communities, as defined by the Multivariate 
Regression Tree. Ns = not significant. Significance levels for unpaired t tests and 
effect sizes (Cohen’s d) are given.  

Organism t- 
value 

p Effect 
size 

comparison 

Ascidians 2.58 0.010 0.460 clear-water >
turbid 

Bryozoans − 1.05 ns − 0.188 clear-water =
turbid 

Crustose calcareous 
algae 

0.43 ns 0.077 clear-water =
turbid 

Cyanobacterial mats 0.54 ns 0.09 clear-water =
turbid 

Fleshy macroalgae 8.38 <0.001 1.49 clear-water >
turbid 

Millepora spp. 0.51 ns 0.091 clear-water =
turbid 

Octocorals − 3.41 <0.001 − 0.608 clear-water <
turbid 

Other zoanthids − 1.32 ns − 0.236 clear-water =
turbid 

Palythoa spp. − 4.48 <0.001 − 0.798 clear-water <
turbid 

Scleractinians (total) − 3.05 0.002 − 0.544 clear-water <
turbid 

Agaricia fragilis − 2.02 0.044 − 0.360 clear-water <
turbid 

Agaricia humilis − 2.86 0.004 − 0.510 clear-water <
turbid 

Favia gravida − 3.47 <0.001 − 0.619 clear-water <
turbid 

Madracis decactis − 0.96 ns − 0.171 clear-water =
turbid 

Meandrina brasiliensis − 0.82 ns − 0.147 clear-water =
turbid 

Montastraea cavernosa 0.21 ns 0.038 clear-water =
turbid 

Mussismilia braziliensis − 3.03 0.002 − 0.541 clear-water <
turbid 

Mussismilia harttii − 3.78 <0.001 − 0.674 clear-water <
turbid 

Mussismilia hispida − 4.66 <0.001 − 0.829 clear-water <
turbid 

Mussismilia leptophylla − 0.03 ns − 0.006 clear-water =
turbid 

Porites astreoides − 3.15 0.002 − 0.560 clear-water <
turbid 

Porites branneri − 1.46 ns − 0.260 clear-water =
turbid 

Siderastrea spp. − 1.57 ns − 0.279 clear-water =
turbid 

Scolymia wellsi − 1.79 ns − 0.319 clear-water =
turbid 

Sponges 4.35 <0.001 0.774 clear-water >
turbid 

Turf algae − 8.89 <0.001 1.58 clear-water <
turbid  
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(Lesser et al., 2010). Our data revealed that M. cavernosa also dominated 
turbid coastal reefs, particularly in the central Brazilian coast. In fact, 
M. cavernosa was previously recognized as a major component of the 
“sediment resistant coral fauna” in the Western Atlantic, including 
Brazil, and may benefit from the same environmental conditions pre-
vailing in both, shallow turbid and deep clear-water reefs: low light 
levels and increased nutrient availability (Lasker 1980; Francini-Filho 
et al., 2013). Morgan et al. (2016) first used the terminology “shal-
low-water mesophotic reefs” to describe such similarities. Reefs domi-
nated by Montastraea spp. (“Monstastraea reefs”) play critical roles by 
hosting the highest species richness, ecological processes and ecosystem 
services among reef habitats in the Caribbean (Mumby et al., 2008). 
Montastraea reefs at the Fernando de Noronha Archipelago are known to 
harbor a higher fish biomass than surrounding habitats (Krajewski and 
Floeter 2011) and additional studies evaluating the importance of 
Montastraea reefs in Brazil are warranted. 

The inshore (<8.1 km offshore) turf algae-dominated turbid com-
munities were the most prevalent in the Brazilian Province (n = 43 
sites), possibly due to the influence of several large rivers along the coast 
(Leão et al., 2003; Mies et al., 2020). The offshore turbid communities 
(≥8.1 km offshore) with higher nitrate concentrations (≥0.013 μM) 
showed the highest macroalgal abundance among all turbid commu-
nities, while offshore reefs with lower nitrate levels (<0.013 μM) 
showed the highest abundance of reef-building organisms (CCA and 
scleractinians) and the zoanthid Palythoa spp. This later community 
occurred exclusively in the Abrolhos Bank, where the largest and richest 
reefs in the South Atlantic are located (Leão et al., 2003). Nitrate 
enrichment may impair skeletogenesis and growth, and decrease the 
bleaching threshold of reef corals (Marubini and Davies 1996; 
Ferrier-Pagès et al., 2001; Wooldridge 2009), while favoring the growth 
of reef algae (Lapointe, 1997; McClanahan et al., 2003). Thus, we hy-
pothesize that the extremely low nitrate concentrations and the turbid 
waters across the Abrolhos shelf allow photophobic reef-building corals 
to thrive by increasing their competitive capabilities over algae. The 
high abundance of Palythoa spp. (mostly P. caribaeorum) in the Abrolhos 
reefs was previously recorded (Francini-Filho et al., 2013). This is a 
fast-growing species that aggressively competes for space (Suchanek and 
Green 1981; Silva et al., 2015; Lonzetti et al., 2022) and may benefit 
from high turbidity through enhanced heterotrophy and incorporation 
of sediment particles in its tissue (Haywick and Mueller 1997; Santana 
et al., 2015). Finally, the offshore turbid reefs with higher nitrate con-
centrations and with increased macroalgal abundance recorded here 
were all located near urban centers in the Espírito Santo, Paraíba and 
São Paulo states, and additional studies may clarify the possible in-
fluences of anthropogenic nitrate sources on macroalgal proliferation. 

Our results corroborate the photophobic nature of some Brazilian 
scleractinian corals (Leão et al., 2003; Coni et al., 2017; Mies et al., 
2020). Seven species (Agaricia fragilis, Agaricia humilis, Favia gravida, 
M. braziliensis, Mussismilia harttii, Mussismilia hispida and Porites 
astreoides) were more abundant in the turbid than the clear-water group, 
while M. cavernosa showed similar abundances in both, shallow turbid 
reefs and deeper clear-water reefs, as explained above. The preferential 
association with low lit habitats (i.e. turbid/deeper) makes Brazilian 
corals less susceptible to bleaching and other thermally induced impacts 
in the face of global warming (Cacciapaglia and van Woesik 2016; Mies 
et al., 2020). The co-occurrence of corals and turf algae in turbid reefs 
also suggests that these coral species have efficient mechanisms to cope 
with the intense spatial competition with turf algae (Jompa and McCook 
2003; Vermeij et al., 2010). 

Our data show that turbidity is the most important environmental 
driver of benthic reef communities in the Brazilian Province, thus 
corroborating previous studies showing its key role on the evolution and 
dynamics of Brazilian reefs (Leão et al., 2003). The effects of high 
turbidity were noticed not only for corals, but other organisms as well, 
particularly algae, which are dominant components of SW Atlantic reefs. 
Because deep clear-water and shallow turbid reefs, such as the extensive 

Montastraea reefs recorded here, may work as climate refugia (Bongaerts 
and Smith 2019; Mies et al., 2020; Bleuel et al., 2021; Sully et al., 2022), 
our results have important implications for delimiting potential climate 
refuges in Brazil. They also highlight the need to avoid local threats (e.g. 
overfishing, pollution) to these important coral-dominated habitats. 
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