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 In the marine realm, the tropics host an extraordinary diversity of taxa but the drivers underlying the global distribution 
of marine organisms are still under scrutiny and we still lack an accurate global predictive model. Using a spatial data-
base for 6336 tropical reef fi shes, we attempted to predict species richness according to geometric, biogeographical and 
environmental explanatory variables. In particular, we aimed to evaluate and disentangle the predictive performances of 
temperature, habitat area, connectivity, mid-domain eff ect and biogeographical region on reef fi sh species richness. We 
used boosted regression trees, a fl exible machine-learning technique, to build our predictive model and structural equation 
modeling to test for potential  ‘ mediation eff ects ’  among predictors. Our model proved to be accurate, explaining 80% of 
the total deviance in fi sh richness using a cross-validated procedure. Coral reef area and biogeographical region were the 
primary predictors of reef fi sh species richness, followed by coast length, connectivity, mid-domain eff ect and sea surface 
temperature, with interactions between the region and other predictors. Important indirect eff ects of water temperature on 
reef fi sh richness, mediated by coral reef area, were also identifi ed. Th e relationship between environmental predictors and 
species richness varied markedly among biogeographical regions. Our analysis revealed that a few easily accessible variables 
can accurately predict reef fi sh species richness. Th ey also highlight concerns regarding ongoing environmental declines, 
with region-specifi c responses to variation in environmental conditions predicting a variable response to anthropogenic 
impacts.   

 Understanding the mechanisms generating and maintaining 
the global distribution of species richness is one of the major 
goals of biogeography and ecology (Gaston 2000), but we 
still lack conclusive evidence to separate processes from 
patterns (Hawkins et   al. 2003). Although mechanisms are 
not well understood, strong relationships between species 
richness and environmental or geographical variables have 
been identifi ed at large scales. Indeed, in the marine realm, 
recurrent predictors of species richness are consistently sea 
surface temperature, habitat area, and the mid-domain 
eff ect (Bellwood et   al. 2005, Tittensor et   al. 2010). Th is 
suggests that, even if understanding mechanisms producing 

vs. maintaining variation in species richness remains chal-
lenging, it is possible to identify, contrast and disentangle 
those factors that best explain current-day large-scale pat-
terns (Hawkins et   al. 2003, Jetz and Fine 2012). 

 In the marine realm, the tropics host an extraordinary 
diversity of taxa upon which ecosystem goods and services 
depend (Worm et   al. 2006). Tropical coastal zones, how-
ever, are presently in severe decline (Bellwood et   al. 2004, 
Knowlton and Jackson 2008). Human pressures and global 
environmental changes are inducing local biodiversity ero-
sion which may imperil ecosystem functioning (Bellwood 
et   al. 2012). Identifying and ranking environmental or 
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geographical variables maintaining species richness is thus 
critical to addressing the worldwide biodiversity crisis. 

 Here we built a predictive model of reef fi sh species rich-
ness at a global scale and we disentangled the relative con-
tribution of environmental (i.e. temperature, habitat area, 
connectivity) and geographical variables (i.e. mid-domain 
eff ect, biogeographical region) in explaining observed global 
diversity patterns. Previous works on reef fi shes focused on the 
Indo-Pacifi c (Bellwood et   al. 2005) or Tropical Eastern Pacifi c 
(Mora and Robertson 2005). Th ese studies identifi ed habitat 
area (Bellwood and Hughes 2001), the mid-domain eff ect 
(Connolly et   al. 2003), connectivity to the Indo-Australian 
Archipelago (IAA; Mora et   al. 2003), and a combination of 
mid-domain eff ect and habitat area (Bellwood et   al. 2005) 
as the main predictors of reef fi sh richness. Th e mid-domain 
eff ect considers the spatial variation of species richness 
due to bounding constraints (Colwell and Hurtt 1994). 
If the geographical ranges of species are randomly placed 
within a bounded domain, the resultant richness gradient 
will form a peak in the middle of the domain (i.e. the mid-
domain). Following Stehli, Wells, Potts and Rosen (reviewed 
by Bellwood et   al. 2012) we propose a connectivity hypo -
thesis that postulates that areas with low geographical dis-
tances between habitat patches will sustain comparatively 
higher species richness as it allows for potentially more 
interconnected meta-communities. At smaller scales, this 
hypothesis is supported by experimental evidences docu-
menting higher fi sh species richness along continuous reefs 
than in isolated reef patches (Belmaker et   al. 2011). Th e 
area hypothesis predicts that the greater the habitat area, 
the higher the number of species that can be maintained 
(Gray 2001). Finally, the energy hypothesis predicts that 
higher temperature supports high species richness through 
its eff ects on the biochemical kinetics of metabolism (Allen 
et   al. 2002). 

 Although major predictors of reef fi sh richness have 
been identifi ed, a more complex scenario emerges when 
attempting to disentangle their relative infl uence at a global 
scale. Diff erent oceanic basins have markedly diff erent 
evolutionary histories (Floeter et   al. 2008, Cowman and 
Bellwood 2013). Th e Indo-Pacifi c region, where most previ-
ous research was focused, shows a unique pattern of varia-
tion in species richness which is markedly diff erent from 
that observed in the Atlantic Ocean. In the Indo-Pacifi c, 

species richness declines nearly uniformly with increasing 
distance from the IAA, which is close to the mid-domain 
of the region (Bellwood et   al. 2012). In contrast, the bio-
diversity hotspot in the Atlantic Ocean (i.e. the Caribbean) is 
distant from the mid-domain and comparatively less 
connected to surrounding areas because of several bio-
geographical barriers (Luiz et   al. 2012). 

 Contrary to the pattern observed in the tropical Indo-
Pacifi c (Bellwood et   al. 2005), at a broader latitudinal scale in 
the Atlantic Ocean, Macpherson (2002) found a major role 
of temperature and a negligible eff ect of area in explaining 
the distribution of species richness for several marine taxa, 
including fi shes. Complex interactions between environ-
mental, geographic and historical variables may thus blur 
the patterns and weaken the predictive power of models at 
a global scale. 

 To overcome these constraints and to provide a robust 
predictive model of fi sh species richness in the tropics, we 
accounted for the biogeographical region in our analysis. 
Our goal is to test whether an accurate predictive model can 
be proposed for reef fi shes at global scale based on geometric, 
biogeographical and environmental factors and accounting 
for their interactions. After construction of the predictive 
model, we then used structural equation models to further 
explain the complex pathways between explanatory factors 
and fi sh richness.  

 Methods  

 Fish species lists 

 We obtained estimates of reef fi sh species richness at 163 
locations worldwide (Fig. 1). We examined almost 500 ref-
erences and extracted information from published works, 
regional checklists, monographs on specifi c families or gen-
era, and reports (Supplementary material Appendix 1). We 
restricted data collection to the oceans portion showing a 
minimum monthly sea surface temperature (hereafter SST) 
of 17 ° C. Although the present study focused on the tropics, 
whose SST limit is usually set at 20 ° C, we decided to use 
a broader defi nition of  ‘ tropical ’  oceans, thereby including 
locations where species of tropical affi  nity are present. Th e 
inclusion of those locations between 17 ° C and 20 ° C broadens 

  Figure 1.     Geographical position of the 163 locations (black circles) for which information on the presence – absence of tropical reef-
associated fi sh was available. Dotted lines indicates known physical or physiological barriers considered as boundaries of the domains. Stars 
represents the position of the mid-domains. EPB: Eastern Pacifi c Barrier; MAB: Mid-Atlantic Barrier; AOB: Amazon-Orinoco Barrier.  
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the range of variables, potentially increasing the accuracy of 
our predictive model. Overall, we obtained information on 
the distribution of 6336 reef fi shes from 37 locations in the 
Atlantic Ocean, 39 in the Indian Ocean, 70 in the Pacifi c 
Ocean, and 17 in the Tropical Eastern Pacifi c.   

 Explanatory variables 

 Explanatory variables were selected according to several 
hypotheses explaining the variation in species richness 
based on previous works and general ecological theories. 
In particular, we considered the following hypotheses: 1) 
energy; 2) area; 3) mid-domain (hereafter MD) eff ect and 
4) connectivity. 

 Estimates for each explanatory variable were obtained for 
each location using two geographical defi nitions of location. 
First, according to maps and descriptions in the original 
literature used to estimate species richness, we defi ned for 
each location, the area of the shelf (sea-bottom down to 200 
m depth) to which the species list pertained. Th e shelf was 
defi ned using SRTM30_PLUS bathymetry (Shuttle Radar 
Topography Mission) available at  � http://topex.ucsd.edu/
WWW_html/srtm30_plus.html � . In this way, we obtained 
polygons of diff erent size according to the locations, which 
were later used for the extraction of explanatory variables 
from raster and vector spatial fi les. Second, we estimated 
explanatory variables within a standard radius of 600 km 
around each location. Th e 600 km radius was chosen because 
it was already successfully employed by previous research 
conducted in the Indo-Pacifi c (Bellwood et   al. 2005) and 
encompasses the probable larval dispersal envelope of reef 
fi shes (Swearer et   al. 2002). All spatial analyses were con-
ducted using a global equal area Behrmann projection with 
the prime meridian set at 145 °  longitude. 

 For the energy hypothesis, we evaluated SST (i.e. mini-
mum, mean, maximum and the range of annual values of 
sea surface temperature). Th is information was obtained 
from the Bio-ORACLE database at a resolution of 5 arcmin 
(Tyberghein et   al. 2012) available at  � www.oracle.ugent.
be � . SST estimates were based on monthly mean values 
from 2002 to 2009. 

 For the area hypothesis we considered the total coral reef 
area (km 2 ), the shelf area (km 2 ) and the coast length (km). 
Shelf area was considered as a relevant proxy of the historical 
habitat availability as it provides an approximate estimate of 
the coastal waters during the Pleistocene low sea level stands 
(Bellwood et   al. 2005). Coast length was used as an estimate 
of the present extent of coastline used by shallow water reef 
fi sh. Both coast length and shelf area were obtained using 
SRTM30_PLUS bathymetry (Shuttle Radar Topography 
Mission). Estimates of coral reef area were obtained from 
data based on the Coral Reef Millennium Census project 
(Andr é fou ë t et   al. 2006) and available at:  � http://data.
unep-wcmc.org/ � . 

 Th e potential eff ect of MD on species richness was also 
considered. Typically it is assessed using null-models based 
on resampling of species with defi ned geographical ranges 
(Currie and Kerr 2008). However, there is a substantial lack 
of agreement on the most appropriate null-model and this 
approach does not easily account for multiple predictors 

in the same analysis. Th us, we implemented the approach 
developed by Bellwood et   al. (2005) calculating the distance 
from the MD relative to the domain size (i.e. the norma-
lised distance to the MD) for each location. We operatively 
defi ned the domains as those areas within well-known physi-
cal or physiological barriers that are rarely crossed by reef 
fi shes. We defi ned fi ve such domains in all (Fig. 1). In the 
Indo-Pacifi c we considered the area from the western Indian 
Ocean to Easter Island and Salas y G ó mez as separated 
from the Tropical Eastern Pacifi c by the East Pacifi c Barrier 
(Robertson et   al. 2004, Robertson and Cramer 2009). In the 
Atlantic Ocean, we considered two distinct domains along 
the west coast, respectively separated by the Amazon River 
barrier and one domain in the east coast, east and west coasts 
of the Atlantic being separated by the Mid-Atlantic Barrier 
(Floeter et   al. 2008, Luiz et   al. 2012). 

 In order to account for the connectivity hypothesis, con-
nectivity was defi ned as the relative proximity of each loca-
tion to patches of reef fi sh habitat. Connectivity estimates 
were calculated using a nearest neighbour approach, which 
is typically employed in ecological research (Moilanen and 
Nieminen 2002). In particular, using a Behrmann projection, 
the world was divided into cells (200    �    200 km at the equa-
tor) from which only cells containing reef fi sh habitat (i.e. 
coast or coral reef ) were retained. Th ese cells represent habi-
tat patches and for each location we computed the inverse 
of the mean distance from the location to the 10 nearest 
patches. We arbitrarily used 10 nearest neighbours instead of 
1 in order to limit the strong dependency of the variable to a 
single neighbour, which may not always be highly connected 
to the most proximate reefs because of current fl ows (Mora 
et   al. 2012). Finally, we considered the diff erent evolution-
ary histories characterising each biogeographical region 
(Cowman and Bellwood 2013). We therefore included a 
 ‘ region ’  factor as a predictor variable. We used four bio-
geographical regions: the Atlantic Ocean, Indian Ocean, and 
Pacifi c Ocean and the Tropical Eastern Pacifi c.   

 Data analysis 

 In order to build a predictive model for global patterns of 
species richness for tropical reef fi shes we implemented 
boosted regression trees (hereafter BRT, Friedman 2001). 
BRT diff er from traditional regression methods that produce 
a single  ‘ best ’  model in that they combine large numbers of 
simple trees to optimize predictive performance (Elith et   al. 
2008). Th is approach was preferred over linear or additive 
models for two main reasons: 1) BRT can handle complex 
relationships and interactions among predictor variables that 
were expected to emerge at a global scale; 2) BRT are consid-
ered as a robust technique which can handle outliers and non-
linearity (Friedman 2001, Elith et   al. 2008). Although BRT 
were also considered relatively robust to collinearity among 
predictor variables, it has been recently shown that removing 
collinearity from explanatory variables showing a Pearson cor-
relation coeffi  cient higher than |0.7| is a desirable practice also 
with techniques based on boosting (Dormann et   al. 2012). 

 After testing for collinearity between explanatory vari-
ables, we decided to remove maximum SST, minimum 
SST and the extent of the continental shelf (Supplementary 
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eff ects (Mitchell 1992). Th is analysis was conducted because 
ecological relationships between our predictor variables may 
blur direct relationships. Th us, disentangling the existence 
of  ‘ mediation eff ects ’  on fi sh richness may allow for a better 
understanding of their interactions. 

 Th e modeling process in SEM requires the a priori speci-
fi cation of pathways considering the relationships between 
variables. In this study, we specifi ed the conceptual model 
based on hypothesized mechanisms expected to operate in 
tropical reef systems. First, we included all the direct rela-
tionships between explanatory variables and reef fi sh rich-
ness. Second, we introduced hypothesized relationships 
between pairs of explanatory variables, largely based on pre-
vious knowledge and general ecological theory. A potential 
eff ect of temperature-related variables on coral reef area was 
included in the model as temperature is known to be a limit-
ing factor for coral reef development and also relates to the 
aragonite saturation (Kleypas et   al. 1999). 

 Moreover we hypothesized an eff ect of the region on several 
variables. In particular, we hypothesized a region eff ect on coral 
reef area, because coral reef area is asymmetrically distributed 
across regions (Bellwood et   al. 2005). Similarly, we considered 
a regional eff ect on connectivity, as the Pacifi c, Indian and 
Atlantic Oceans diff er markedly in their history of connectiv-
ity (Cowman and Bellwood 2013). Other potential eff ects of 
regions, namely on temperature and MD eff ect were excluded 
because we forcedly considered the same temperature range in 
each region and the metric used to measure the MD infl uence 
was a priori standardized according to the domain size. 

 SEM was fi tted using the  ‘ lavaan ’  library in R using the 
Bollen – Stine bootstrapping technique which is adequate 
when fi tting SEMs on variables not showing normal distri-
bution (Rosseel 2012). 

 Spatial autocorrelation is a fundamental property of bio-
geographical data, with nearby locations are more related than 
distant ones. However, the autocorrelation of model residu-
als is a direct evidence that some unmeasured variables are 
missing to explain the spatial structure in the data (Hawkins 
et   al. 2007, Hawkins 2012). We thus tested for spatial auto-
correlation in the residuals of the fi nal models (both BRT 
and SEM) by computing Moran’s I index for diff erent spatial 
lags. Moran’s I correlograms were computed using 5 classes 
of distance-based neighbors defi ned by increasing the spatial 
lag by 500 km, from 2500 km (i.e. the minimum distance 
needed for having at least one neighbor for each location) 
to 5000 km which represents the largest spatial gap between 
islands (Victor and Wellington 2000). Th e analysis was con-
ducted using the  ‘ spdep ’  package in R (Bivand et   al. 2013). 
Spatial patterns of the residuals were also mapped in order to 
highlight locations where overestimation or underestimation 
of reef fi sh richness occurred.    

 Results 

 Th e highest values of reef fi sh richness were disproportionally 
found in the Indo-Pacifi c, and especially in the IAA (Table 1; 
Fig. 2) with 2016 species in the Philippines. From the IAA, 
richness tends to decrease almost regularly both eastward 
and westward. An exception to this regular pattern occurred 
in the western Indian Ocean where species richness between 

material Appendix 2). Regarding SST estimates, high col-
linearity was detected between mean SST and minimum or 
maximum SST, thus suggesting that mean SST alone con-
tains most of information about temperature extremes. In 
addition, we detected collinearity between shelf area and 
coast length and we decided to remove the shelf area from 
further analyses because previous research evidenced a neg-
ligible role of this variable on reef fi sh richness (Bellwood 
et   al. 2005). 

 BRT were fi tted using the gbm library in R (Ridgeway 
2007) with additional functions provided by Elith et   al. 
(2008). Th is technique allows for the specifi cation of four 
main parameters: bag fraction ( bf  ), learning rate ( lr ), tree 
complexity ( tc ) and the number of trees ( nt ).  bf  is the pro-
portion of samples used at each step,  lr  is the contribution of 
each fi tted tree to the fi nal model,  tc  is the number of nodes 
of each fi tted tree determining the extent to which statisti-
cal interactions were fi tted, and  nt  represents the number 
of trees corresponding to the number of boosting iterations. 
Optimal setting of the parameters was chosen using 5-fold 
cross validation (CV). Th e procedure provides a parsimoni-
ous estimate, CV –  D  2  (i.e. the cross validated proportion of 
the deviance explained), representing the expected perfor-
mance of the model when fi tted to new data (Elith et   al. 
2008). Using CV, we explored diff erent combinations of the 
parameters to be set and retained the model showing the 
highest CV –  D  2  (Supplementary material Appendix 3). 

 We also explored the possibility of eliminating non-
informative predictor variables to select the most parsimoni-
ous model. Th is simplifi cation process uses CV procedure, 
progressively simplifying the model fi tted to each fold, and 
using the average CV errors to decide which and how many 
variables can be removed from the original model without 
decreasing its performance (see Appendix 2 in Elith et   al. 
2008 for details on the simplifi cation procedure). 

 Th e relative infl uence of predictor variables in BRT mod-
els was evaluated with the contribution to model fi t attrib-
utable to each predictor, averaged across all the trees fi tted 
(Friedman 2001). In order to account for uncertainty around 
these estimates, the relative infl uence of each explanatory 
variable was calculated on 1000 bootstrap replicates of the 
original dataset in order to compute 95% confi dence inter-
vals. Similarly, we evaluated the accuracy of our predictive 
model calculating and mapping 95% confi dence intervals of 
model predictions at each location. 

 We also identifi ed the most important interactions 
between each pair of predictors (Elith et   al. 2008). Th e eff ect 
of the most important predictors on fi sh richness was visu-
alized by means of partial dependence plots, obtained by 
plotting predicted values in relation to major variables, while 
maintaining other variables constant. 

 As BRT cannot provide a simple way to depict model 
structure (i.e. no equation) and outputs, we illustrated BRT 
by plotting the fi rst regression tree fi tted by the technique. 

 In addition to BRT, which was used with the main goal 
of building a predictive model, structural equation models 
(SEM) were employed to disentangle direct vs indirect eff ects 
of explanatory variables on fi sh richness by evaluating many 
causal paths. SEM thus quantifi es the relative direct and 
indirect contributions of predictors by incorporating par-
tial regression models in order to disentangle pure variable 
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distance to the MD, mean SST and SST range (Fig. 3). Area 
predictors (i.e. coral reef area and coast length) showed a 
more or less complex positive asymptotic relationship with 
species richness (Fig. 4). A positive relationship with fi sh 
richness was found for the mean SST and connectivity as 
well. Th e relationship between fi sh richness and the distance 
from MD was instead negative and the SST range was linked 
to fi sh richness by a complex hump-shaped relationship. 

 Th e fi nal BRT model showed a high predictive perfor-
mance, explaining 80% of the total deviance using a cross-
validated procedure. Th e relationship between observed and 
predicted species richness was remarkably high (R 2    �     0.95 for 
a regression of slope 1 and 0 intercept, Fig. 5). In addition, 
uncertainty around predictions was extremely low, generally 
being    �    2% of the observed richness at a given location (see 
maps in Supplementary material Appendix 5). 

 Interaction between predictors played an important role. 
BRTs considering interactions between predictors performed 
much better than simpler BRTs (Supplementary material 
Appendix 6). Region, in particular, was the most  ‘ interact-
ing ’  variable and had relatively strong interactions especially 
with coral reef area, distance from MD, and coast length, 
thus highlighting that these factors have diff erent eff ects in 
each region (Supplementary material Appendix 6, Fig. 4). 
In general individual eff ects in the Atlantic Ocean and TEP 
appeared to be less pronounced than in the Pacifi c and 
Indian oceans. Th is is partially due to an  ‘ intercept ’  eff ect, 
since the diversity of the Indian and Pacifi c oceans is much 
higher than that of the other regions. 

Madagascar and Mauritius rises to approximately half the 
IAA with more than 950 species. Th e Atlantic Ocean and 
the Tropical Eastern Pacifi c (hereafter TEP) showed a com-
paratively lower richness in reef fi shes. Th e richest area in 
the TEP was Panama with 330 species, while the richest area 
of the Atlantic Ocean was located between Cuba and the 
Virgin Islands with 461 species. 

 Th e fi nal models obtained using either locations defi ned 
as polygons of varying size or standard areas within a 600 km 
radius yielded almost identical results. Th erefore, we report 
only the results obtained using polygons of varying sizes 
for each location because they better refl ect the basis of our 
fi sh data, while the results obtained using standard areas are 
reported in Supplementary material Appendix 4. 

 Th e fi nal model accounted for all seven predictor vari-
ables, none of which was removed by the simplifi cation 
procedure. Th eir relative infl uences are in descending order: 
coral reef area, region, coast length, connectivity, normalized 

  Table 1. Species and genera richness in each of the four regions 
(right part of the table) and species and genera in common for each 
pair of regions (left part of the table). Grey cells represent informa-
tion at genus level while white ones are referred to species level.  

Atlantic Indian Pacifi c TEP Species 
richness

Genera 
richness

Atlantic 159 148 161 1186 372
Indian 84 678 137 3236 809
Pacifi c 74 2383 142 3919 815
TEP 65 103 120 634 281

  Figure 2.     (a) Map of the observed richness of reef-associated fi shes; (b) map of the richness of reef-associated fi shes predicted by the BRT 
model. Colors and circle size represent 10 richness classes indentifi ed based on the observed richness. Th e same scheme was later applied 
on the map of predicted richness.  
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  Figure 3.     (a) Relative infl uence of the predictor variables as ranked by the fi nal BRT model. Error bars represent 95% confi dence intervals 
obtained from 1000 bootstrap samples of the original dataset. (b) First tree fi tted by the BRT. Th e end points of the tree (nodes) represent 
mutually exclusive combinations of independent variables. At each node, a mean estimate of the dependent variable is calculated from the 
data points falling within that node. Th e fi nal BRT model contains 1700 trees.  

  Figure 4.     BRT model predictions of reef-associated fi sh richness according to several explanatory variables for the diff erent regions. Values 
for predictors other than those on the x-axis are held constant at their mean. Black lines: Pacifi c Ocean; grey lines: Indian Ocean; dotted 
black lines: Atlantic Ocean; dotted grey lines: Tropical Eastern Pacifi c.  

 Th e tests for detecting spatial autocorrelation in the residu-
als were not signifi cant for all the spatial lags considered (at 1st 
lag: Moran’s I    �    0.0528, p    �    0.068, Supplementary material 
Appendix 7), indicating that a spatial structure in overestima-
tion or underestimation of species richness was not found. 

 Th e structural equation model was highly signifi cant 
( χ  2     �    214, DF    �    12, p    �    0.0001) and explained 54% of 
the total variation in fi sh richness. However, we detected 
signifi cant spatial autocorrelation in SEM residuals (at 
1st lag: Moran’s I    �    0.1708, p    �    0.0001, Supplementary 

material Appendix 7). Since the violation of spatial inde-
pendence tends to infl ate type I errors (Legendre 1993), 
we limited the interpretation of the SEM model to the 
path coeffi  cients, without reporting information on the 
signifi cance of the eff ects (Kissling et   al. 2008). SEM 
results were generally consistent with the results obtained 
with the BRT, particularly the ranking of direct predictor 
eff ects (Fig. 6). Path coeffi  cients highlighted that region 
played mainly a direct role on species richness; its eff ect 
on coral reef and connectivity was comparatively lower. 
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history, Jetz and Fine (2012) demonstrate how jointly con-
sidering historical and contemporary environmental pre-
dictors accounts for more than 80% of the variation in the 
diversity of terrestrial vertebrates at a global scale. 

 Th e analysis of interaction strength between explanatory 
variables highlighted that the region (used here as a proxy of 
evolutionary history) established strong interactions, espe-
cially with the MD eff ect, coral reef area, coast length and 
SST range. Th e eff ect of evolutionary and biogeographical 
history on reef fi sh distribution patterns has been docu-
mented worldwide (Floeter et   al. 2008, Bellwood et   al. 
2012, Cowman and Bellwood 2013) and has underpinned 
major shifts in species richness distribution during the past 
50 million yr (Renema et   al. 2008). Our results and the 
interactions detected between region and other predictors 
are consistent with the hypothesis that a combined eff ect 
of phylogenetic and biogeographical histories, and present 
environmental characteristics is likely to shape the present 
geographical pattern of reef fi sh richness. In this regard, it 
is worth mentioning that the relative importance of vari-
ables obtained with the BRT model includes most of their 
interactions. Th is also explains the higher infl uence of the 
region factor recorded by BRT compared to SEM models. 
While BRT accounts for interactions between predictors 
but not for mediation eff ects, SEM does the opposite and 
their results should be seen as complementary. Th e spatial 
autocorrelation detected in SEM residuals but not in BRT 
residuals is likely due to the higher predictive performance 
of the latter models which show a low proportion of 
unexplained variation. 

 Besides history, our analyses evidence a primary role of 
area variables and, in particular, of coral reef area. Th is is 
in agreement with the fi ndings of Bellwood et   al. (2005), 
who identifi ed coral reef area and MD eff ect as the key vari-
ables explaining most variation in reef fi sh diversity patterns 
across the Indo-Pacifi c. However, contrary to their analyses, 
we detect only a minor role of the MD eff ect. Th is is, at least 
in part, due to the global scale of our work, embracing fi ve 
separate domains, whereas Bellwood et   al. (2005) focused on 
the Indo-Pacifi c domain. Partial dependence plots confi rm 
an important role of the MD in the Pacifi c Ocean while its 
eff ect is less infl uential in the Indian Ocean and especially in 
the TEP and the Atlantic Ocean (Fig. 4). Th e comparatively 
lower infl uence of the MD eff ect in the Indian Ocean is 
likely due to the high richness of the south-west coast of the 
basin reaching a fi sh species richness almost half that of the 
IAA. Th is secondary hotspot has already been documented 
to be the cause of a main deviation from the null expecta-
tion depicted by the sole MD eff ect (Connolly et   al. 2003). 
Despite the high number of species that the Indian Ocean 
shares with the Pacifi c, our fi ndings suggest that the Indian 
Ocean may act, at least in part, as a separate domain. Th e 
negligible role of the MD eff ect in the Atlantic Ocean, is 
probably due to an asymmetric distribution of shallow water 
or reefal habitats, low diversity faunas, limited geographical 
extents, and extensive extinction (O’Dea et   al. 2007, Floeter 
et   al. 2008). 

 Our analyses also evidence an important role of connec-
tivity, especially in the Indian and Pacifi c Oceans. Th is result 
is highly consistent with Cowman and Bellwood (2013) who 
highlight the evolutionary role of dispersal from the IAA 

In contrast, mean SST showed a strong positive indirect 
eff ect on species richness, mediated by coral reef area.   

 Discussion 

 We analyzed the relative contribution of a range of 
variables in explaining current-day tropical reef fi sh rich-
ness at a global scale. Our analysis revealed the potential 
for biogeographical history to interact with present envi-
ronmental variables to shape the distribution of reef fi sh 
richness. Environmental predictors, in fact, showed diff er-
ent eff ects according to the biogeographical region. Th is 
has been previously documented for terrestrial environ-
ments, where the role of present environmental variables 
has been shown to diff erentially shape amphibians rich-
ness in diff erent biogeographical realms (Buckley and Jetz 
2007). Likewise, with deeper insights into evolutionary 

  Figure 5.     Relationship between observed species richness at each 
location and species richness predicted by the BRT model. Empty 
black circles: Atlantic Ocean; empty grey circles: Tropical Eastern 
Pacifi c (TEP); fi lled black circles: Pacifi c Ocean; fi lled grey circles: 
Indian Ocean.  

  Figure 6.     Results of the structural equation model performed to 
assess direct and indirect eff ects of explanatory variables on reef fi sh 
species richness. Numbers represent standardized path coeffi  cients. 
Arrows thickness is proportional to path coeffi  cients. Since we 
detected spatial autocorrelation for SEM residuals potentially 
infl ating type I error, we reported all the path coeffi  cients without 
considering p-values.  
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contrast, the geographically restricted Caribbean, Atlantic and 
TEP have had a long history of isolation, with the resultant 
extinction of marine taxa and limited diversifi cation within 
the remaining fi sh lineages (Bellwood and Wainwright 2002, 
O ’ Dea et   al. 2007, Cowman and Bellwood 2013). Th is evo-
lutionary fi ltering of the fi sh faunas may, at least in part, help 
explain why Caribbean fi sh assemblages have much stronger 
associations with non-reef habitats (rocky reefs, mangroves, 
seagrasses etc) than their Indo-Pacifi c counterparts (Bellwood 
and Wainwright 2002, Barnes et   al. 2012); because they had 
to survive during periods with limited reef area. It may also 
explain why the composition of Caribbean and TEP reef fi sh 
faunas have a stronger resemblance to those of non-tropical 
coastal faunas, such as that of New Zealand, rather than low-
latitude coral reef assemblages (Bellwood and Wainwright 
2002). It is this history that may explain, at least in part, the 
limited response of TEP and Atlantic fi sh faunas to reef area, 
temperature or other reef-associated variables. 

 Our results have important implications in terms of reef 
fi sh conservation. Coral reef area was the most infl uential vari-
able according to both BRT and SEM analyses. However coral 
reefs are presently at risk and under multiple human pressures, 
including climate change, habitat destruction, pollution, over-
fi shing, and ocean acidifi cation (Pandolfi  et   al. 2011) lead-
ing to the reduction of live coral cover and suitable habitat. 
In addition, our fi ndings show an important positive eff ect of 
mean SST on reef fi sh richness, mediated by coral reef area. 
Anthropogenic climate change has already triggered profound 
responses of coral reefs due to increasing temperature and posi-
tive thermal peaks that have resulted in massive die-off  of coral 
species and a signifi cant decrease of coral cover worldwide 
(Goreau et   al. 2000) and their associated fi shes (Wilson et   al. 
2006). Human pressure is thus acting on the main predic-
tors of reef fi sh species richness both directly by local impacts, 
and indirectly by global warming. Given the strong interac-
tions identifi ed, our results suggest that diff erent regions will 
respond diff erently to ongoing anthropogenic pressures. 

 Our work demonstrates that a few and readily available 
variables are suffi  cient to accurately predict the pattern of 
variation in reef fi sh species richness at global scale. We found 
a very strong relationship between observed and predicted 
fi sh species richness and low uncertainty around prediction 
estimates. Th e high proportion of cross-validated deviance 
highlights the applicability of our model to new locations, 
thereby representing an important tool for attempting fi ll-
ing the gaps in those areas where information on fi sh species 
richness is still unavailable or inaccessible.                  
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in the development of Indian and Pacifi c Ocean reef fi sh 
faunas. Our results are also in agreement with the fi ndings of 
Mora et   al.(2003) who explained the low richness character-
izing isolated Pacifi c islands as the result of a fi ltering from 
the IAA (cf. the center of origin hypothesis; Bellwood et   al. 
2012). Similarly, although working at smaller scales, Sandin 
et   al. (2008) report an important role of connectivity on spe-
cies richness in the Caribbean. 

 Our results highlighted a limited infl uence of SST related 
variables. Th is is in agreement with previous research con-
ducted in the Indo-Pacifi c (Bellwood et   al. 2005), but in 
contrast with other studies conducted in the Atlantic Ocean 
or at a global scale (Macpherson 2002, Tittensor et   al. 2010). 
Th is is probably due to the extent of the latter works which 
explored a broader latitudinal gradient, including multiple 
taxa in temperate and polar environments. From this per-
spective, the relationship between species richness and tem-
perature may be not linear, thereby exerting a signifi cant role 
at the interface between cold-temperate and tropical waters, 
but a minor eff ect once tropical temperatures (i.e. higher 
than 17 ° C in our case) are reached. 

 Structural equation models provided further insight into 
the way the predictors of species richness may interact. In 
this regard, we expected history to play mainly indirectly on 
reef fi sh richness, most isolated islands and coral reefs being 
asymmetrically located in the Pacifi c Ocean. Our results, 
however, suggest that the region factor has a major direct 
eff ect on species richness and help to disentangle the rela-
tionship between fi sh richness and the other predictors for 
diff erent regions. SST, instead, has a major indirect role on 
reef fi sh richness mediated by coral reef area. Th is partially 
clarifi es the minor role of temperature on reef species richness 
documented by previous research (Bellwood et   al. 2005) and 
from the BRT models in the present work. Coral reef devel-
opment is known to be severely limited by SST (Kleypas 
et   al. 1999) and, according to the results obtained by SEM, 
its eff ect on fi sh richness may be interpreted as linked to hab-
itat provision more than to the energy hypothesis itself. 

 One of the most striking results was the among-region 
variation in the response of fi sh diversity to environmental 
variables. Previous work has reported variation among major 
marine groups in their response to environmental variables. 
Macroalgae, for example, have been reported to be more sus-
ceptible than fi shes to SST (Kerswell 2006). Variation within 
a taxon is, in some ways, counterintuitive. One may expect 
fi shes to react to temperature in a similar manner, regardless 
of the region. Th e observed variation among regions, how-
ever, may have both methodological and historical expla-
nations. In terms of methodology, the regions vary greatly 
in the magnitude of the gradients observed. For example, 
the area of reef habitat in the Pacifi c (within 600 km radius 
areas) varies from 0 km 2  (e.g. Sala Y Gomez) to    �    10 000 km 2  
(Great Barrier Reef ), while in the TEP it ranges from 
0 to about 100 km 2  (Costa Rica), as the entire TEP has  
  �    200 km 2  of reef area. Th us the gradients, and the capacity 
of fi shes to respond, are region-specifi c. 

 Historically, the various regions have experienced mark-
edly diff erent evolutionary histories. Th e Indian and Pacifi c 
Oceans have experienced extended periods of connectivity, 
and within these oceans reef fi sh lineages have exhibited 
expansion and dispersal (Cowman and Bellwood 2013). In 
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